Divergent effects of an α_2 -adrenergic antagonist on lipolysis and thermogenesis: Interactions with a β_3 -adrenergic agonist in rats

JAVIER GÓMEZ-AMBROSI¹, GEMA FRÜHBECK², MIRIAM AGUADO¹, FERMÍN I. MILAGRO¹, JAVIER MARGARETO¹ and ALFREDO J. MARTÍNEZ¹

¹Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona; ²Department of Endocrinology, Clínica Universitaria de Navarra, 31008 Pamplona, Spain

Received April 13, 2001; Accepted May 7, 2001

Abstract. This study was undertaken in order to test the hypothesis that selective B3-AR stimulation and simultaneous blockade of α_2 -AR would result in an increase of lipolysis and thermogenesis in rats. Incubation of isolated white adipocytes with the a2-AR antagonist yohimbine produced a concentration-dependent increase in glycerol release (P<0.001) for all assayed concentrations (10-12-10-6 M) and potentiated the lipolytic effect of the B3-AR agonist Trecadrine. However, in vivo administration of yohimbine produced a marked decrease in body temperature (1.3-1.5°C, P<0.001) and blocked the thermogenic effect of Trecadrine when simultaneously administered. A similar response was observed for whole body oxygen consumption. Furthermore, yohimbine did not modify brown adipose tissue oxygen consumption, but blocked the β₃-AR-mediated increase triggered by Trecadrine. Brown adipose tissue UCP-2 and -3 mRNA expression was not changed by yohimbine. In conclusion, the present work indicates that in vitro α_2 -AR blockade by yohimbine potentiates the β₃-AR-mediated stimulation of lipolysis. On the other hand, in vivo a2-AR antagonism blocks the thermogenic effects mediated by β₃-AR stimulation, suggesting a possible interplay between the receptors.

Introduction

It is well established that catecholamines exert a dual control on white fat cell lipolysis in rats and other species: stimulation by acting on β -adrenoceptors (β -AR) and inhibition mediated through α_2 -adrenoceptors (α_2 -AR) (1). Three types of β -AR,

Correspondence to: Professor Alfredo J. Martínez, Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain

E-mail: jalfmtz@unav.es

Key words: Trecadrine, yohimbine, β_3 -adrenoceptor agonist, α_2 -adrenoceptor antagonist, lipolysis, thermogenesis

namely the β_1 -, β_2 -, and β_3 -AR, have been well characterized by their distinct pharmacological properties, protein sequence and gene organization (2). Recent evidence for a fourth β -AR called β_4 -AR has been also reported (3,4). The first three β -AR are present in white adipocytes (5). The α_2 -AR is present in rat white adipocytes and it seems to belong to the α_{2A} -subtype (6), which appears to mediate inhibitory changes in the cAMP cascade. Thus, it would be reasonable to hypothesize that selective β_3 -AR stimulation and simultaneous blockade of α_2 -AR on white adipocytes could result in an increase of the lipolytic response.

On the other hand, the sympathetic nervous system plays an important role in energy expenditure through the regulation of thermogenesis, which constitutes a physiological defense against cold and excessive energy intake (7). Brown adipose tissue (BAT) is of special interest in the study of thermogenesis because a mitochondrial protein called uncoupling protein (UCP1) is expressed specifically in this tissue (8). UCP1 is known to uncouple oxidative phosphorylation by moving protons across the mitochondrial inner membrane toward the mitochondrial matrix (9). Recently, two further members of the UCP family have been cloned (i.e., UCP2 and UCP3). UCP3 is expressed mainly in BAT and skeletal muscle, whereas UCP2 is expressed ubiquitously (10). Thermogenesis in BAT is primarily mediated by B₃-AR, whose stimulation induce a strong induction of UCP1 expression, but have no clear effect on UCP2 and UCP3 expression in BAT and other tissues (11-13). In addition, it has been suggested that α2-AR may participate in the regulation of thermogenesis (6). In this sense, it has been reported that administration of yohimbine to fasted dogs increases oxygen consumption and heat production (14) and that yohimbine may regulate the expression of UCP1 in BAT (15). However, the thermogenic effect of α₂-AR blockade and its consequences on UCPs expression remain unclear.

The aim of the present work was to study the *in vitro* lipolytic effect of yohimbine and its *in vivo* effect on lipolysis and thermogenesis as well as whether the α_2 -AR blockade elicited by yohimbine may induce a potentiation of the lipolytic and thermogenic effects of the β_3 -AR agonist Trecadrine in Wistar rats. Also, the potential involvement of BAT UCPs in some of these process was evaluated.

Materials and methods

Animals. Five-month-old male Wistar rats weighing 420-430 g were obtained from CIFA (Centro de Investigación en Farmacobiología Aplicada, Pamplona, Spain) and housed at 25±1°C with 12 h light cycle (8 a.m. to 8 p.m.) and fed ad libitum. They were fasted for 24 h before in vitro lipolysis assays or drug administration for in vivo experiments.

Drugs. Trecadrine, a diphenyl-methylene-ethylamine derived compound, whose formula and characterization as a β_3 -adrenoceptor agonist have been previously published (16) was a generous gift of Wassermann-Chiesi (Barcelona/Milan). Yohimbine-hydrocloride was purchased from Sigma (Sigma Chemical Co., St. Louis, MO, USA). All other chemicals and organic solvents were of reagent grade.

Isolation of white adipocytes and lipolysis measurement. Adipocytes from epididymal fat were isolated as described elsewhere (17). Briefly, white adipose tissue samples were cut into small pieces and the fragments were digested at 37°C with collagenase P (Boehringer Mannheim GmbH, Mannheim, Germany) in Krebs-Ringer bicarbonate buffer containing 3.5% bovine serum albumin (Sigma) and 6 mM glucose at pH 7.4 (KRBA). The ratio of digestion solution to adipose tissue mass was 5 ml g-1 and 0.75 ml of KRBA per mg of collagenase. After 90 min of incubation under continuous vigorous shaking (90 cycles min-1) the fat cells were filtered through a nylon mesh and washed tree times with KRBA to eliminate the stroma-vascular fraction and collagenase. The fat cells were brought to a suitable dilution in KRBA buffer. Adipocytes were incubated in polyethylene tubes (1 ml of incubation medium) with continuous gentle shaking (30 cycles min-1) in a water bath at 37°C. Drugs were added to the polyethylene tubes just prior to the beginning of the second incubation. Responses to the following drugs were evaluated: the B3-AR agonist Trecadrine (10-12-10-6 M), the α2-AR antagonist yohimbine (10-12-10-6 M) and the same range of concentrations of yohimbine in combination with the EC₅₀ of Trecadrine as determined by the logit method (18). The basal lipolysis was determined in the absence of drugs. After 90 min, the incubation tubes were placed in an ice bath and 200 µl of the infranatant were removed for the enzymatic determination of glycerol released into the incubation medium, which was taken as the index of lipolytic rate. Data are expressed as percentage of increment with respect to basal after a 90-min incubation in KRBA.

Treatments for in vivo experiments. Forty rats were randomly assigned to four groups of ten animals each. Rectal temperature of the animals was measured before the administration of: saline, the β_3 -adrenoceptor agonist Trecadrine (1 mg·kg⁻¹ i.p), yohimbine (5 mg·kg⁻¹ i.p) or a combination of both at the indicated doses. After 1 h, rectal temperature and oxygen consumption were measured as described later. Animals were killed by decapitation and trunk blood was collected. A small portion of interscapular BAT was used for ex vivo oxygen consumption determination. The remaining BAT was immediately frozen in liquid nitrogen and stored at -80°C until analysis. All experimental procedures were performed

according to institutional guidelines for Animal Care and Use at the University of Navarra.

Oxygen consumption and rectal temperature. Oxygen consumption was assessed by means of a Jacketed Oxygen Consumption Chamber (Harvard Apparatus, Edenbridge, UK). Values represent the average volume of O₂ consumed during six consecutive 30-sec sampling periods at 1-min intervals while animals were in a resting situation. The temperature of the chamber was maintained at 25°C. Rectal temperature was measured before and 1 h after drug administration by a rectal probe (Yellow Springs Instruments, Yellow Springs, OH, USA) connected to a Panlab thermometer pb 0331 (Panlab, Barcelona, Spain) as previously described (19).

Brown adipose tissue ex vivo oxygen consumption. A fragment of BAT from each rat obtained immediately after decapitation was cut into small pieces and placed into the experimental chambers with Krebs-Ringer phosphate buffer containing 6 mM glucose at pH 7.4. Oxygen consumption was measured with a YSI Model 5300 Biological Oxygen Monitor using a Clark-type oxygen electrode as previously reported (16).

Blood analyses. Plasma glucose concentrations were determined by the glucose oxidase method (Spotchem analyzer, Menarini, Barcelona, Spain). Serum insulin levels were measured by a radioimmunoassay kit (Rat insulin [125]] assay system, Amersham, Buckinghamshire, UK). Glycerol concentrations were quantified by using an enzymatic colorimetric method (Randox Laboratories, Antrim, UK). Serum leptin concentration was measured by means of a commercially available ELISA kit (ActiveTM Murine Leptin ELISA, Diagnostic System Laboratories, Webster, TX, USA).

RNA analysis by reverse transcription-polymerase chain reaction (RT-PCR). Total RNA was isolated by Ultraspec™-II (Biotech Laboratories, Houston, TX, USA) from 100 mg of BAT according to the manufacturer's instructions. The yield and quality of the RNA were assessed by measuring absorbance at 260 and 280 nm and by electrophoresis on 1.5% agarose gels. After 30 min at 37°C treatment with 10 units of RNase free DNase I (Boehringer Mannheim), 1 µg of RNA was used to synthesize first-strand cDNA. The RT reaction was carried out in a volume of 20 µl containing 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiotreitol, 100 ng of random hexamers (Boehringer Mannheim), 1 mM each dNTP (Bioline, London, UK), 20 units of RNase inhibitor (Promega, Madison, WI, USA), 200 units of M-MLV RT (Gibco BRL, Life Technologies, Gaithersburg, MD, USA) and incubated at 37°C for 60 min. The enzyme was inactivated by heating at 95°C for 5 min. Four µl from the RT reaction were amplified in a 50 µl reaction mixture containing 40 ng of each primer, 16 mM (NH₄)₂SO₄, 67 mM Tris-HCl (pH 8.8), 2 mM MgCl₂, 0.1% Tween-20, 0.2 mM each dNTP and 1 unit of BioTaqTM polymerase (Bioline). Primers used to amplify UCP1, UCP2, UCP3 and ß-actin cDNA were the same as described elsewhere (13). cDNA was amplified for 20 (UCP1), 32 (UCP2), 35 (UCP3) and 25 cycles (\(\beta\)-actin) using the following parameters: 94°C for 30 sec, 58°C (UCP1), 62°C (UCP2), 60°C (UCP3) and 59°C (β-actin) for 30 sec and 72°C for 30 sec, with a final extension step at 72°C for 7 min. Amplifications were linear under these conditions and were carried out in a GeneAmp® PCR System 2400 (Perkin Elmer, Norwalk, CT, USA). All PCR reactions for each gene were performed with the same batch of Taq polymerase in order to reduce variations in the efficiency of PCR. The amplified products were resolved in a 1.5% agarose gel with ethidium bromide. Levels of mRNA were expressed as the ratio of signal intensity for each UCP relative to that for β-actin. PCR bands intensity were determined by densitometric analysis with the Gel Doc 1000 UV fluorescent gel documentation system and Molecular Analyst 1.4.1 software for quantitation of images (Bio-Rad, Hercules, CA, USA). The identity of PCR product amplifications was previously demonstrated (13).

Statistics. All results are expressed as mean ± SE mean. The lipolytic effect of drugs was analyzed by means of two-tailed one-sample t-tests in order to detect differences of each concentration assayed with basal values. Two-way ANOVA followed by Tukey's post hoc test analyzed the differences between doses. Furthermore, two-tailed unpaired t-tests were applied to compare the combined effect of yohimbine and Trecadrine with that of yohimbine alone. Data concerning in vivo and ex vivo experiments were analyzed using repeated-measure two-way ANOVA coupled to a two-tailed unpaired t-test when an interaction was detected. Pearson's correlation coefficient was computed to analyze correlations between two variables. The calculations were performed using the SPSS/Windows version 7.5.2S (SPSS, Chicago, IL, USA). A P-value lower than 0.05 was considered statistically significant.

Results

Lipolysis studies. The incubation of isolated white adipocytes with yohimbine produced a statistically significant (P<0.001) concentration-dependent increase in glycerol release for all concentrations tested. The average percent change increase from baseline lipolytic activity ranged from 16±2% for the lowest concentration (10-12 M) to 111±6% for the highest one (10-6 M). Trecadrine induced a pronounced stimulation of lipolysis (P<0.001) producing a 175±8% increase with respect to baseline at the 10-6 M concentration. When adipocytes were incubated simultaneously in the presence of Trecadrine [at a concentration of 3.13x10⁻¹⁰ M (EC₅₀)] and yohimbine (10-12-10-6 M) the lipolytic effect was enhanced (Fig. 1). In order to test for potential interactions, the effect of Trecadrine (EC₅₀) plus yohimbine referred to that of Trecadrine (EC₅₀) was compared with the effect of yohimbine referred to baseline. The analysis showed the existence of a significantly positive interaction (P<0.001) between the lipolytic effects of Trecadrine and yohimbine on white fat cells at all concentrations of yohimbine assayed.

Effects of drug administration on rectal temperature and in vivo oxygen consumption. Acute i.p. administration of Trecadrine to fasted Wistar rats induced a significant rise (P<0.001) in rectal temperature. On the contrary, yohimbine administration produced a marked decrease (P<0.001) of body temperature (1.3-1.5°C), which could not be counteracted

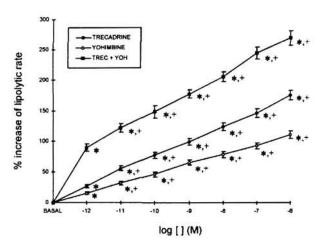


Figure 1. Concentration-response curves for stimulation of glycerol release from white adipocytes elicited by the β_3 -AR agonist Trecadrine, the α_2 -AR antagonist yohimbine and a combination of both. For the combined study, adipocytes were incubated with concentrations of yohimbine ranging from 10^{-12} to 10^{-6} M in presence of the EC₅₀ of Trecadrine (3.13x10⁻¹⁰ M). Each value is the mean \pm SEM (vertical bars, Trecadrine or yohimbine, n=16; Trecadrine plus yohimbine, n=8). 'P<0.001 when compared to the basal value (by two-tailed one-sample t-test), +P<0.001 when compared with previous lower concentration (by two-way ANOVA followed by *Tukey's* test).

by Trecadrine administration. Furthermore, a statistically significant interaction (P=0.044) between them was found (Fig. 2a).

The thermogenic effect of Trecadrine was confirmed by the statistically significant rise (P<0.001) on whole body oxygen consumption observed after its administration. Yohimbine reduced significantly oxygen consumption and inhibited the Trecadrine-induced increase, following a similar pattern to that observed for rectal temperature, finding again a statistically significant (P=0.027) negative interaction (Fig. 2b).

The parallelism observed between rectal temperature and oxygen consumption was reinforced by the statistically significant positive correlations observed between whole body oxygen consumption and change in body temperature (r=0.656, P<0.00001; Fig. 2c) and final rectal temperature (r=0.579, P<0.0001).

Effects on ex vivo oxygen consumption of brown adipose tissue fragments. Fragments of BAT obtained from rats, which had received Trecadrine only, showed a 20% increase in oxygen consumption with respect to control animals (P=0.034). This effect was not observed when animals received simultaneously yohimbine. In this context, a statistically significant (P=0.027) negative interaction between Trecadrine and yohimbine was found, while yohimbine administered alone had no effect (Fig. 3a). BAT oxygen consumption showed positive correlations with whole body oxygen consumption (r=0.468, P=0.009; Fig. 3b) and rectal temperature gradient (r=0.511, P=0.004; Fig. 3c).

Effects on blood biochemistry. Acute Trecadrine administration produced a slight but statistically significant (P=0.026) elevation of serum glucose concentrations. Yohimbine per se had no effect, but blunted the effect of Trecadrine when both

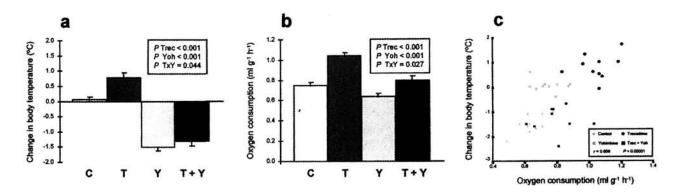


Figure 2. Effect of acute (1 h) i.p. administration of Trecadrine (1 mg·kg⁻¹), yohimbine (5 mg·kg⁻¹), both drugs combined at the same doses or vehicle on rectal temperature (a) and whole body oxygen consumption (b) of Wistar rats. Values are mean \pm SEM, n=10 per group. C, control; T, Trecadrine; Y, yohimbine; T + Y, Trecadrine plus yohimbine. Correlation analysis of both variables is shown in (c). Statistical analysis by two-way ANOVA (a) and (b) or Pearson's (c) is shown in the figure.

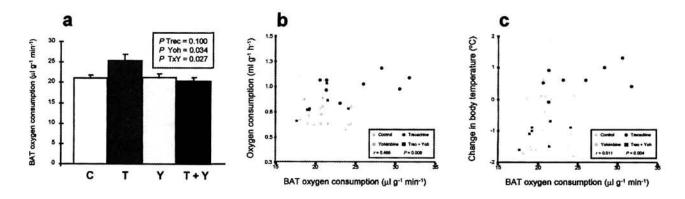


Figure 3. Effect of acute (1 h) i.p. administration of Trecadrine (1 mg·kg¹), yohimbine (5 mg·kg¹), both drugs combined at the same doses or vehicle on oxygen consumption of fragments of BAT of Wistar rats determined *ex vivo* (a). Values are mean ± SEM, n=7-8 per group. C, control; T, Trecadrine; Y, yohimbine; T + Y, Trecadrine plus yohimbine. Correlation analysis of BAT oxygen consumption with whole body oxygen consumption (b) and change in rectal temperature (c). Statistical analysis by two-way ANOVA (a) or Pearson's (b) and (c) is shown in the figure.

Table I. Acute effects on blood biochemistry 1 h after a single intraperitoneal injection of the β_3 -AR agonist Trecadrine (1 mg·kg⁻¹), yohimbine (5 mg·kg⁻¹), their combination or saline in 24-h fasted Wistar rats.

	Control	Trecadrine	Yohimbine	T + Y	ANOVA-2		
					P Trec	P Yoh	PTxY
Glucose (mmol·l·1)	7.9±0.2	8.6±0.2a	8.1±0.2	7.7±0.2 ^b	0.483	0.034	0.009
Insulin (ng·ml-1)	1.91±0.31	1.57±0.13	1.62±0.28	1.62±0.20	0.500	0.642	0.502
Glycerol (mmol·l·l)	0.30 ± 0.02	0.62±0.04	0.36±0.03	0.71±0.04	< 0.001	0.023	0.576
Leptin (ng·ml-1)	0.89±0.28	0.83±0.20	1.06±0.20	1.26±0.28	0.752	0.233	0.585

Data are mean \pm SEM, n=10 per group. Statistical significance of the differences between treatments were evaluated using repeated-measure two-way ANOVA coupled to a two-tailed unpaired t-test when an interaction was detected: $^aP<0.05$ vs control group. $^bP<0.01$ vs Trecadrine treated group. T + Y, Trecadrine plus yohimbine.

drugs were administered simultaneously. Thus, a statistically significant (P=0.009) negative interaction between them was observed. Neither Trecadrine nor yohimbine modified plasma insulin concentrations 1 h after administration. Serum glycerol

concentrations were increased by acute administration of both Trecadrine (P<0.001) and yohimbine (P=0.023). Serum leptin concentrations were not modified by any treatment (Table I).

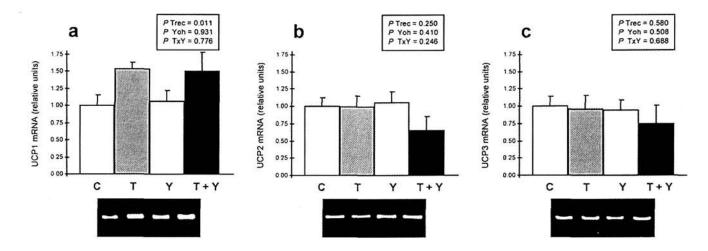


Figure 4. Effect of acute (1 h) i.p. administration of Trecadrine (1 mg·kg¹), yohimbine (5 mg·kg¹), both drugs combined at the same doses or vehicle on UCP1 (a), UCP2 (b) and UCP3 (c) mRNA expression in BAT measured by RT-PCR. Data represent the mean \pm SEM of the ratio between each UCP to β -actin. The expression of each UCP in control rats was assumed to be 1 (n=6 in each group). Statistical analysis by two-way ANOVA is shown on top. Representative photographs of RT-PCR products are shown on bottom. C, control; T, Trecadrine; Y, yohimbine; T + Y, Trecadrine plus yohimbine.

Effects on UCP mRNA expression in BAT. UCP1 mRNA expression in BAT was significantly (P=0.011) upregulated 1 h after Trecadrine administration, while UCP2 and UCP3 were unaffected by this β_3 -AR agonist. Yohimbine administration did not modified the expression of any UCP studied (Fig. 4).

Discussion

Catecholamines exert a dual control on white fat cell lipolysis in rats and other species by stimulating B-AR and inhibiting α₂-AR (1). Initially, it was believed that rat adipocytes did not have α_2 -AR-mediated inhibition of lipolysis (20). This assumption, based mainly on the lack of effect of clonidine, was reassessed by using the selective α2-AR agonist UK 14304 (21). Incubation of white adipocytes in the presence of yohimbine produced a concentration-dependent increase in the glycerol released to the medium. These results, are in agreement with previous findings reported by Muhlbachova et al (22) and indicate that the \alpha_2-AR antagonist yohimbine has a lipolytic effect per se. It is difficult to explain how yohimbine can exert a direct effect on white adipocytes given the fact that an antagonist, by definition, has no biological effect. Therefore, we hypothesized that yohimbine could have an inverse agonist activity at the α_{2A} -AR as has been suggested for other α_{2A} -AR antagonist (23). On the other hand, the β_3 -AR agonist, Trecadrine induced a marked in vitro lipolytic effect on white adipocytes. This effect is in accordance with previous in vitro studies of Trecadrine (24) and other B3-AR agonists (3,25,26). A potentiation of the lipolytic effect of Trecadrine was achieved by co-incubation with yohimbine

The results obtained confirm our hypothesis and demonstrate that β_3 -AR-mediated stimulation of lipolysis is more effective after α_2 -AR blockade. In the *in vivo* experiments, 1 h after drug administration, serum concentrations of glycerol were taken as an index of lipolytic activity. Both Trecadrine and yohimbine produced a statistically significant increase of glycerol levels. The increase in glycerol concentrations

triggered by yohimbine administration has been reported to take place in rabbits (27), dogs (28), and humans (29). However, to our knowledge there is no published evidence of this effect in rats and our findings support either an *in vivo* stimulation of lipolysis or an inhibition of antilipolytic process by yohimbine in rats. The simultaneous administration of Trecadrine and yohimbine did not potentiate the *in vivo* lipolytic response as opposed to the *in vitro* effect. Perhaps, the occurrence of physiological catecholamines or the existence of a contraregulatory mechanism avoiding an excessive lipolytic response by adipocytes does not allow to obtain *in vivo* the potentiation observed *in vitro*.

Trecadrine administration produced a marked thermogenic response as evidenced by the increase in rectal temperature and whole body oxygen consumption. Similar results have been obtained with other β_3 -AR agonists (30,31). By contrast, yohimbine produced a marked reduction in rectal temperature and oxygen consumption. Reported evidence concerning α₂-AR regulation of body temperature in rodents is inconsistent. Thus, hypothermic responses after both i.p. α2-AR agonist (dexmedetomidine) administration (32) and s.c. α2-AR antagonist (delequamine) administration (33) have been described. Yohimbine produces a hypothermic effect in rats (34,35), but also attenuates/prevents the hypothermia produced by clonidine (36,37). Our data show that yohimbine clearly reduces body temperature and oxygen consumption and that these effects are predominant over the thermogenic effect of Trecadrine as supported by the detected interactions. Moreover, both effects are strongly associated as shown by the statistical correlation between them. The reduction in energy expenditure reported herein is in disagreement with the thermogenic effect described by Galitzky et al (14) in dogs, which may be explained by differences between species, probably depending on the different patterns of distribution of α_2 -AR in brain.

Trecadrine administration increased BAT oxygen consumption as described for other β_3 -AR agonists (4,38). Yohimbine had no effect on BAT oxygen consumption *per se*. However, when yohimbine and Trecadrine were administered

simultaneously the effect of Trecadrine was prevented. This observation may suggest the existence of a cross-talk between α_2 -AR and β_3 -AR in this tissue.

In order to explore the possible mechanisms involved in the changes concerning thermogenesis, the expression of UCPs in BAT was analyzed. As expected, UCP1 expression in BAT was upregulated by acute Trecadrine administration (13). On the other hand, it has been previously demonstrated that yohimbine potentiates the noradrenaline-mediated increase in UCP1 expression in cultured brown adipocytes (15). However, in this study vohimbine had no in vivo effect and did not block the effect of Trecadrine when simultaneously administered. This finding contrast with the results obtained ex vivo with BAT fragments and could be explained by specific effects of yohimbine on the activity of UCP1 or other proteins involved in thermogenesis, but not on UCP1 expression. The lack of effect of yohimbine on UCP1 expression suggests that the in vivo lipolytic effect of yohimbine is not a consequence of an increase in synaptic noradrenaline elicited by α2-AR blockade as proposed (6), but seems to suggest a direct effect. BAT UCP2 and UCP3 mRNA were not modified by Trecadrine or yohimbine administration. Similar results have been obtained by other investigators in acute treatments with different B₃-AR agonists (39,40) and to our knowledge this is the first study concerning a2-AR regulation of BAT UCP2 and UCP3 expression. Therefore, it can be concluded that BAT UCP2 and UCP3 seem not contribute to the acute thermogenic changes observed after β_3 -AR agonism or α_2 -AR antagonism.

In summary, in vitro α_2 -AR blockade by yohimbine present a marked lipolytic effect on rat white adipocytes and potentiates the β_3 -AR-mediated stimulation of lipolysis induced by Trecadrine. Acute yohimbine administration stimulates glycerol release, but does not potentiate the effect of Trecadrine, and induces changes in fuel utilization, interfering with the effect of Trecadrine on serum glucose concentrations. Yohimbine produces a marked decrease in rectal temperature and whole body oxygen consumption blocking the thermogenic effect of Trecadrine. These effects are not fully explained by changes in BAT UCPs and seem to be centrally mediated.

Acknowledgements

This work was supported by the Linea Especial (Nutrition & Obesity LE/97) of the University of Navarra. We greatly thank Verónica Ciaúrriz for her excellent technical assistance. The β_3 -adrenoceptor agonist Trecadrine was a generous gift from Wassermann-Chiesi.

References

- Lafontan M and Berlan M: Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34: 1057-1091, 1993.
- Carpene C, Bousquet Melou A, Galitzky J, Berlan M and Lafontan M: Lipolytic effects of β₁-, β₂-, and β₃-adrenergic agonists in white adipose tissue of mammals. Ann N Y Acad Sci 839: 186-189, 1998.
- Galitzky J, Langin D, Verwaerde P, Montastruc JL, Lafontan M and Berlan M: Lipolytic effects of conventional β₃-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative β₄-adrenoceptor. Br J Pharmacol 122: 1244-1250, 1997.

- Preitner F, Muzzin P, Revelli JP, Seydoux J, Galitzky J, Berlan M, Lafontan M and Giacobino JP: Metabolic response to various β-adrenoceptor agonists in β₃-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue. Br J Pharmacol 124: 1684-1688, 1998.
- Germack R, Starzec AB, Vassy R and Perret GY: β-adrenoceptor subtype expression and function in rat white adipocytes. Br J Pharmacol 120: 201-210, 1997.
- 6. Lafontan M and Berlan M: Fat cell α_2 -adrenoceptors: the regulation of fat cell function and lipolysis. Endocr Rev 16: 716-738, 1995.
- Lowell BB and Spiegelman BM: Towards a molecular understanding of adaptive thermogenesis. Nature 404: 652-660, 2000.
- Himms-Hagen J: Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J 4: 2890-2898, 1990.
- Garlid KD, Jaburek M and Jezek P: The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438: 10-14, 1998.
- Boss O, Hagen T and Lowell BB: Uncoupling proteins 2 and 3. Potential regulators of mitochondrial energy metabolism. Diabetes 49: 143-156, 2000.
- Savontaus E, Rouru J, Boss O, Huupponen R and Koulu M: Differential regulation of uncoupling proteins by chronic treatments with B₃-adrenergic agonist BRL 35135 and metformin in obese fa/fa Zucker rats. Biochem Biophys Res Commun 246: 899-904, 1998.
- 12. Yoshitomi H, Yamazaki K, Abe S and Tanaka I: Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic β₃ adrenergic receptor agonist treatment. Biochem Biophys Res Commun 253: 85-91, 1998.
- Gómez-Ambrosi J, Frühbeck G and Martínez JA: Leptin, but not a β₃-adrenergic agonist, upregulates muscle uncoupling protein-3 messenger RNA expression: short-term thermogenic interactions. Cell Mol Life Sci 55: 992-997, 1999.
- Galitzky J, Vermorel M, Lafontan M, Montastruc P and Berlan M: Thermogenic and lipolytic effect of yohimbine in the dog. Br J Pharmacol 104: 514-518, 1991.
- Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B and Nedergaard J: β₁ to β₃ switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct β-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140: 4185-4197, 1999.
- Barrionuevo M, Milagro FI, Cenarruzabeitia E and Martinez JA: Potential anti-diabetic applications of a new molecule with affinity for β₃-adrenoceptors. Life Sci 59: L141-L146, 1996.
- Frühbeck G, Aguado M, Gómez-Ambrosi J and Martínez JA: Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun 250: 99-102, 1998.
- Bylund DB and Yamamura HI: Methods for receptor binding. In: Methods in Neurotransmitter Receptor Analysis. Yamamura HI, Enna SJ and Kuhar MJ (eds). Raven Press, New York, pp1-35, 1990
- Martínez-Ansó E, Pérez M and Martínez JA: Induction of hypothermia, hypoglycemia and hyperinsulinemia after acute leptin immunoneutralization in overnight fasted mice. Int J Mol Med 2: 681-683, 1998.
- Lafontan M, Berlan M and Carpene C: Fat cell adrenoceptors: inter- and intraspecific differences and hormone regulation. Int J Obes 9 (Suppl 1): 117-127, 1985.
 Rebourcet MC, Carpene C and Lavau M: Evidence of functional
- Rebourcet MC, Carpene C and Lavau M: Evidence of functional α₂-adrenergic receptors in adult-rat adipocytes by using the agonist UK 14304. Biochem J 252: 679-682, 1988.
- Muhlbachova E, Zamostny V, Kadrabova M and Horny I: Lipolysis in rat adipose tissue *in vitro* and its α₂ adrenergic control. Physiol Bohemoslov 32: 359-365, 1983.
- Murrin LC, Gerety ME, Happe HK and Bylund DB: Inverse agonism at α₂-adrenoceptors in native tissue. Eur J Pharmacol 398: 185-191, 2000.
- Martínez JA, Berraondo B, Pérez R, Frühbeck G and Fernández-Otero MP: Slimming effect and lipolytic activity of a new molecule with affinity for β₃-adrenergic receptors. FASEB J 10: A504, 1996.
- 25. Vicario PP, Candelore MR, Schaeffer MT, Kelly L, Thompson GM, Brady EJ, Saperstein R, MacIntyre DE, Tota LM and Cascieri MA: Desensitization of β₃-adrenergic receptor-stimulated adenylyl cyclase activity and lipolysis in rats. Life Sci 62: 627-638, 1998.

- Germack R, Starzec A and Perret GY: Regulation of β₁- and β₃-adrenergic agonist-stimulated lipolytic response in hyperthyroid and hypothyroid rat white adipocytes. Br J Pharmacol 129: 448-456, 2000.
- Moratinos J, Carpene C, De Pablos I and Reverte M: Role of α₁- and α₂-adrenoceptors in catecholamine-induced hyperglycaemia, lipolysis and insulin secretion in conscious fasted rabbits. Br J Pharmacol 94: 299-310, 1988.
- 28. Taouis M, Berlan M, Montastruc P and Lafontan M: Mechanism of the lipid-mobilizing effect of α_2 adrenergic antagonists in the dog. J Pharmacol Exp Ther 247: 1172-1180, 1988.
- Galitzky J, Taouis M, Berlan M, Riviere D, Garrigues M and Lafontan M: α₂-antagonist compounds and lipid mobilization: evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteers. Eur J Clin Invest 18: 587-594, 1988.
 Himms Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS,
- Himms Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS, Waters BL and Claus TH: Effect of CL-316,243, a thermogenic β₃-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 266: R1371-R1382, 1994.
- Liu YL and Stock MJ: Acute effects of the β₃-adrenoceptor agonist, BRL 35135, on tissue glucose utilisation. Br J Pharmacol 114: 888-894, 1995.
- Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J and Eglen RM: Assessment of the role of α₂-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122: 1339-1344, 1997.

- 33. Redfern WS, MacLean MR, Clague RU and McGrath JC: The role of α_2 -adrenoceptors in the vasculature of the rat tail. Br J Pharmacol 114: 1724-1730, 1995.
- Papeschi R, Sourkes TL and Youdim MB: The effect of yohimbine on brain serotonin metabolism, motor behavior and body temperature of the rat. Eur J Pharmacol 15: 318-326, 1971.
- 35. Zacny E: The role of α₂-adrenoceptors in the hypothermic effect of clonidine in the rat. J Pharm Pharmacol 34: 455-456, 1982.
- Livingston A, Low J and Morris B: Effects of clonidine and xylazine on body temperature in the rat. Br J Pharmacol 81: 189-193, 1984.
- 37. Bill DJ, Hughes IE and Stephens RJ: The thermogenic actions of α₂-adrenoceptor agonists in reserpinized mice are mediated via a central post-synaptic α₂-adrenoceptor mechanism. Br J Pharmacol 96: 133-143, 1989.
 38. Atgie C, D'Allaire F and Bukowiecki LJ: Role of β₁- and β₃-
- Atgie C, D'Allaire F and Bukowiecki LJ: Role of β₁- and β₃adrenoceptors in the regulation of lipolysis and thermogenesis
 in rat brown adipocytes. Am J Physiol 273: C1136-C1142,
 1997.
- 39. Gong DW, He Y, Karas M and Reitman M: Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 272: 24129-24132, 1997.
- Kumar MV, Sunvold GD and Scarpace PJ: Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. J Lipid Res 40: 824-829, 1999.