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Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovas-
cular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol
crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse
models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse
obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possi-
bly because targeted interventions were too far downstream of the inciting inflammatory events.
Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein mem-
ber of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the neces-
sary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its acti-
vation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout,
mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to atten-
uate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these find-
ings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic
dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause
improvements in insulin sensitivity and other obesity-related metabolic impairments.

Published by Elsevier Ltd.

1. Introduction long-term cardiovascular mortality [10,11]. Bariatric surgery,

which may be effective, is an expensive, invasive procedure and

Obesity is the third most common cause of preventable death in
the US, and is a major risk factor for the development of insulin
resistance (IR), type 2 diabetes (T2DM), dyslipidemia, non-
alcoholic fatty liver disease (NAFLD), and cardiovascular disease
(CVD) [1-3]. Although the link between obesity and its comorbid
conditions appears to be multifactorial, inflammation plays a
prominent role through its effects in adipocytes, pancreatic islet
cells, and vascular smooth muscle [4-8].

To date, most strategies for improving obesity and its resultant
maladies have focused on weight loss. Lifestyle modification alone
has been shown to decrease weight and reduce cardiovascular risk
factors [9]; however, sustained success rates are insufficient in
community programs, weight regain is frequent, and even
intensive behavioral programs have not been shown to reduce
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is not without morbidity. Moreover, up to 50% of individuals may
have at least some long-term weight regain and a return of meta-
bolic abnormalities [12,13]. Few medications are currently FDA
approved for weight loss in obesity, and none have been shown
to reduce mortality [14].

Additional medical treatment options for preventing the com-
plications of obesity are therefore urgently needed. Our increasing
understanding of the underlying inflammatory mechanisms that
link obesity, metabolic dysregulation, and cardiovascular disease
allow us to propose a novel therapeutic strategy that may help
break the link between obesity and its metabolic complications.

2. The hypothesis

We hypothesize that interfering with the inflammatory cascade
activated by obesity will help uncouple obesity from its comorbid
conditions. Therefore, disrupting the assembly of the NOD-like
receptor, pyrin domain containing 3 (NLRP3) inflammasome using
the ancient medication colchicine will improve metabolic
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dysregulation via suppression of obesity-related, NLRP3-induced
inflammation among obese adults with metabolic syndrome (MetS).

3. Evaluation of hypothesis
3.1. Inflammation is associated with metabolic dysregulation

Inflammation likely leads to metabolic dysregulation through
several concomitant pathways. In skeletal, adipose, and hepatic tis-
sues, inflammatory cytokines such as interleukin (IL)-1p, IL-6, and
tumor necrosis factor o (TNFat) activate serine kinases Jun N-
terminal kinase (JNK), inhibitor of kappa B kinase (IKK-B), and
protein kinase C (PKC) [15-17]. These kinases in turn serine-
phosphorylate and deactivate insulin receptor substrate-1 (IRS-
1), an important downstream mediator of insulin action, leading
to insulin resistance (Fig. 1) [18-21]. The IKK complex also acti-
vates NF-kB, further promoting inflammatory gene expression
(15). Additionally, the expression of suppressor of cytokine signal-
ing (SOCS) proteins, which target IRS-1 and IRS-2 for ubiquitin-
mediated degradation [22], are induced.

Low-grade systemic inflammation can also impair pancreatic
islet cell functioning and insulin secretion. In early stages of B-
cell dysfunction, inflammatory cytokines disrupt the proper intra-
cellular calcium storage and flux necessary for adequate insulin
secretion [6,7]. Chronically, inflammatory signaling via the NF-xB
and mitogen-activated protein kinase (MAPK) pathways leads to
mitochondrial stress, reactive oxygen species (ROS) formation,
and eventual B-cell apoptosis [23,24]. It is this eventual islet cell
depletion that moves the at-risk individual from obesity to insulin
resistance to frank diabetes [25,26].

3.2. Obesity is associated with inflammation

Many mouse and human studies have demonstrated the associ-
ation of obesity with inflammation. Obesity results when mice are
fed a high-fat diet (HFD), and such HFD mice demonstrate
increased levels of insulin resistance and inflammatory cytokines
and chemokines, including IL-1B, IL-6, IL-18, TNFo, monocyte
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chemoattractant protein-1 (MCP-1), plasminogen activator
inhibitor-1 (PAI-1), and macrophage migration inhibitory factor
(MIF), as compared to lean mice [27-32]. Similarly, in cross-
sectional human studies, circulating markers of inflammation have
been associated with increasing obesity [33-37], and this pro-
inflammatory phenotype is already present among children with
obesity [38-40]. Weight loss, either by lifestyle modification or
bariatric surgery, decreases this inflammatory state [21,38,41-43].

The sources of the chronic low-grade inflammation of obesity
arise from multiple organs, but it appears that adipose tissue itself
is a large contributor to the inflammatory process. Adipose tissue
consists of adipocytes and the stromal vascular fraction (SVF),
which includes fibroblasts, vascular tissue, and adipose tissue
macrophages. In lean individuals, macrophages comprise less than
10% of the cells in adipose tissue [44]. The adipocytes themselves
are small in volume and secrete high levels of adiponectin and
omega-3 fatty acids, which predispose the macrophages to differ-
entiate to an anti-inflammatory phenotype. Such M2 macrophages
release immunosuppressive cytokines, such as IL-10 and TGF,
which act on fat and muscle tissue to enhance insulin sensitivity
[45]. However, in obese individuals, adipocytes are both greater
in volume and number, leading to inefficient triglyceride storage
and increased levels of circulating fatty acids and ceramides [46].
These molecules bind to pattern recognition receptors in adipose
tissue macrophages and stimulate differentiation to a pro-
inflammatory M1 phenotype [47]. Chronic inflammation ensues,
with an increased release of chemokines and cytokines including
TNFa, IL-1B, IL-6, IL-18, plasminogen activator inhibitor-1 (PAI-
1), monocyte chemoattractant protein-1 (MCP-1), and reactive
oxygen species (ROS) [47-49]. These factors further augment adi-
pose tissue inflammation by recruiting additional adipose tissue
macrophages as well as B and T cells [30].

3.3. Proof of concept studies that reducing inflammation can improve
obesity-related metabolic dysfunction

If inflammation is a significant cause of obesity-related meta-
bolic dysregulation, then anti-inflammatory agents should reverse
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Fig. 1. (A) Insulin binding to its receptor stimulates tyrosine phosphorylation and activation of IRS-1 in adipocytes and myocytes. The resultant signaling cascade leads to
GLUT4 sequestration vesicle trafficking to the plasma membrane, allowing for glucose entry into the cell. (B) Inflammation promotes insulin resistance by interfering with
this pathway. Specifically, JNK and IKKB inactivate IRS-1 via serine phosphorylation, while SOCS proteins prevent IRS-1 tyrosine phosphorylation and promote IRS-1

ubiquitination and subsequent degradation.
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obesity’s inflammation-related complications. This has been the
case for some mouse models of obesity. HFD mice treated with a
neutralizing IL-1B antibody demonstrate significant improvement
of glycemic control and beta cell function [23], with no effect on
weight gain or food intake [50]. Given prophylactically, IL-1B anti-
body treatment helps prevent the onset of fasting hyperglycemia
and insulin resistance in HFD mice. IL-1 receptor antagonist (IL-
1Ra) treatment of DIO mice leads to similar results, with decreased
B-cell apoptosis, increased pB-cell proliferation, and improved
glucose-stimulated insulin secretion [50,51]. Studies inducing
blockade of other inflammatory cytokines or pathways in mice,
including TNFa [52], IL-6 [53], MCP-1 [54], MIF [31], and NF-kB
[55] have also demonstrated favorable metabolic results from
reduction of inflammatory processes.

However, such robust results have not been replicated in
human clinical trials. Blockade of TNFa had no effect on metabolic
parameters of participants with T2DM [52] and only marginal
impact in subjects who were non-diabetic but insulin-resistant
[56]. Similar findings were seen when using aspirin or the anti-
IL-18 antibody canakinumab [57-59]. A different monoclonal
anti-IL-1B antibody, gevokizumab, led to improvements in HbAlc,
but not beta-cell secretory function or insulin sensitivity in prelim-
inary trials [60]. Anakinra, a recombinant human IL-1Ra, improved
beta-cell secretory function and decreased Hemoglobin Alc in sub-
jects with diabetes [61], but not in those with impaired glucose tol-
erance [62]. Furthermore, anakinra did not affect insulin sensitivity
as measured by insulin clamp or HOMA-IR in either study.

Although these results are disappointing, they are not wholly
unexpected. The machinery involved in obesity-induced chronic
inflammation is complex. Cytokines may play complementary, if
not redundant, roles in promoting human inflammation. Chemoki-
nes and endothelial adhesion molecules play integral roles in the
sustained inflammatory response by facilitating chemoattraction,
diapedesis, and migration of additional leukocytes to adipose and
pancreatic tissues. For this reason, eliminating a single cytokine
may not be sufficient to cause significant changes in human glu-
cose homeostasis. Notably, high-dose salicylate therapy, which
exerts its anti-inflammatory effects through several concomitant
pathways [63-65], did lower hemoglobin Alc and triglyceride con-
centrations in subjects with T2DM [66]. However, concerns over
long-term safety and tolerability have precluded its use for meta-
bolic dysregulation in routine clinical practice.

3.4. NLRP3 mediates inflammatory activation in obesity

A member of the innate immune system, the NOD-like receptor
family, pyrin domain containing 3 (NLRP3) inflammasome has
been implicated as a major source of the chronic inflammation
seen in obesity. NLRP3 (also known as cryopyrin or NALP3) is pri-
marily expressed in monocytes and macrophages, with little pro-
duction seen in other leukocytes or adipocytes [21,67]. Many
danger-associated molecular pattern (DAMP) molecules commonly
seen in obesity, such as monosodium urate (MSU) crystals [68],
cholesterol crystals [69], islet amyloid polypeptide [70], oxidized
low density lipoprotein (LDL) [71], or saturated free fatty acids
[72], can induce NLRP3 inflammasome formation. NLRP3 does
not bind with DAMPs directly, but rather is stimulated through a
second-messenger [73]. Upon activation by DAMPs, the endoplas-
mic reticulum-based NLRP3 comes into apposition with the
mitochondrially-bound adaptor protein apoptosis-associated
speck-like protein containing a caspase recruitment domain
(ASC; also known as PYCARD) and procaspase-1 to form a multi-
protein inflammasome complex (Fig. 2) [74-76]. Microtubules
serve as the roadways for the subcellular transport of these
molecules within the macrophages and are necessary for proper

cytosolic localization and activation of the inflammasome compo-
nents [76].

The formation of this inflammasome leads to cleavage of
procaspase-1 to its active form, caspase-1, which in turn cleaves
inactive pro-IL-1 and pro-IL-18 into their active forms [77]. IL-1B
initiates the acute phase response and triggers the production
and secretion of other pro-inflammatory cytokines, such as TNFa,
IL-6, and MCP-1, resulting in a progressively amplified cytokine
network [78]. IL-18, meanwhile, induces the production of inter-
feron gamma (IFNYy), IL-10, toll-like receptor 4 (TLR4), Fas ligand,
and vascular cell adhesion molecule-1 (VCAM1) [79,80].

In mouse models, Nlrp3 and IL1b expression in adipose tissue is
positively correlated with body weight and adiposity, and food
restriction results in significant decreases in their expression
(21). Importantly, knocking out components of the NLRP3 inflam-
masome (e.g. Nlrp3~/~, ASC~, caspase-1/~ and IL1b~/") in mice
prevents the development of insulin resistance and inflammatory
cytokine expression during a protracted high fat diet (HFD) state
[21,27,81,82]. Additionally, ablation of the NLRP3 inflammasome
results in markedly smaller adipocytes, elevated levels of adipose
GLUT4 and adiponectin, and decreased inhibition of IRS-1
[21,83]. Caspase-1 knockout mice demonstrate increased fat oxida-
tion and gain significantly less body weight than wild-type mice
during a 10-week HFD regimen, despite similar food intake [27].

In human trials, NLRP3 activation has also been positively cor-
related with adiposity and metabolic dysregulation. Obese individ-
uals with MetS have greater levels of NLRP3 activity and IL1b
expression, increased numbers of adipose tissue macrophages,
and decreased numbers of regulatory T cells in their visceral adi-
pose tissue than either metabolically healthy obese or lean individ-
uals [84]. Among obese subjects with T2DM, weight loss leads to
decreased mRNA expression of IL1b and NLRP3 and enhanced insu-
lin sensitivity [21].

3.5. Colchicine can inhibit NLRP3 inflammasome activation

As noted above, microtubules serve as the mechanism for the
subcellular transport of ASC and NLRP3 within macrophages and
are necessary for proper cytosolic localization and activation of
the inflammasome components [74,76]. Thus, molecules that affect
microtubular function can potentially alter NLRP3 inflammasome
assembly and function.

Colchicine, a potent inhibitor of tubule polymerization, has
been used for centuries to treat inflammatory disorders such as
gout, and more recently Familial Mediterranean Fever [85], Beh-
cet’s Disease [86], and pericarditis [87]. Colchicine is a tricyclic
alkaloid derived from the flowering plant Colchicum autumnale
[88], whose mechanism of action is to bind tubulin in a poorly
reversible manner. At lower doses, this interferes with microtubule
formation and elongation, and at higher concentrations it pro-
motes microtubule depolymerization [89].

Classically it was thought that colchicine’s microtubule disrup-
tion led to anti-inflammatory effects by inhibiting neutrophil
chemotaxis, diminishing release of lysosomal enzymes during
phagocytosis, and inhibiting the expression of adhesion molecules
on the surface of endothelial cells and leukocytes [90-92]. How-
ever, recent in vitro and in vivo studies have suggested that a more
important anti-inflammatory mechanism is colchicine’s ability to
hinder NLRP3 and ASC intracellular transportation and spatial
arrangement, thereby inhibiting inflammasome activation within
macrophages (Fig. 2B) [68,76]. Martinon, et al., demonstrated that
culturing human monocytes with MSU or calcium pyrophosphate
dihydrate (CPPD) crystals stimulated the production of activated
IL-1B and IL-18 in an inflammasome-based manner. However, add-
ing colchicine to the cultures blocked this IL-1B stimulation.
Misawa, et al., showed that colchicine and nocodazole, another



70 A.P. Demidowich et al./Medical Hypotheses 92 (2016) 67-73

A Mitochondrion

Endoplasmic Reticulum

O NLRP3

® Asc

. Pro-Caspase-1

Pro-Caspase-1 @ Pro-IL-1
. @ Pro-IL-18

. . @ o/f tubulin dimers

@ Colchicine

...Pro IL-1
.Pro IL-18

"‘ *** T

IL 18

Caspase-1

Pro- Caspase 1

NLRP3 Inflammasome

[ ) ® @ Pro-IL-1
Caspase-1 @ ~ @ proiL-18

’
1
.__>‘
A
7

¥ 11
38 118

Pro-Caspase-1

Fig. 2. (A) Components of the NLRP3 inflammasome in a quiescent macrophage. (B) Microtubules mediate NLRP3 inflammasome formation by bringing the mitochondrially-
based ASC into apposition with NLRP3, located on the surface of the endoplasmic reticulum. Inflammasome formation cleaves procaspase-1 to caspase-1, which in turn
activates IL-1p and IL-18 and initiates the inflammatory cascade. (C) Colchicine blocks NLRP3 inflammasome formation and activation by inhibiting microtubule

polymerization.

inhibitor of tubulin polymerization, suppressed IL-1p production in
mouse bone marrow-derived macrophages cultured with various
NLRP3-inducers such as nigericin, ATP, silica, and MSU. Inducers
of other inflammasomes, such as flagellin (NLRC4) or double-
stranded DNA (AIM2), which do not depend on microtubules for
activation, continued to demonstrate a robust inflammatory
response in the presence of colchicine or nocodazole. Immunocyto-
chemical analysis showed that stimulated bone marrow-derived
macrophages cultured with nigericin or MSU resulted in subcellu-
lar approximation of mitochondrially-bound ASC to NLRP3, but not
NLRC4 or AIM2. Pretreatment with colchicine prevented this co-
localization, as evidenced by an in situ proximity-ligation assay.

In vivo studies demonstrated that mice pretreated with colchicine
prior to intraperitoneal injection with MSU demonstrated
decreased levels of activated IL-1p [76]. Colchicine thus has the
potential to modulate numerous inflammatory pathways upstream
of the agents previously tested to decrease inflammation in
humans with obesity.

Given the complexity of the inflammatory orchestra associated
with obesity, with cytokines, chemokines, leukocytes, and
endothelial adhesion molecules all working in concert to promote
a sustained response, colchicine’s ability to affect multiple path-
ways may be a key characteristic to enable changes in glucose
homeostasis and metabolic dysregulation. At doses used clinically
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for gout (0.5-1.2 mg daily), colchicine can decrease inflammatory
levels in patients with cardiovascular disease [93,94], and prevent
recurrent gouty attacks [95], pericarditis [87], and restenosis in
bare metal stents [96] in at-risk individuals. Moreover, at higher
doses colchicine has been shown to decrease inflammatory levels
and vascular endothelial markers in Familial Mediterranean Fever
[85,91]. However, to date, there are scant prospective human clin-
ical data focusing on the metabolic effects of using colchicine to
inhibit obesity-induced inflammation. Two retrospective trials
have demonstrated no long-term metabolic adverse consequences
from colchicine use [97,98]; however, neither of these trials specif-
ically examined its effects in those with obesity-induced inflam-
mation. The LoDoCo (Low-Dose Colchicine) trial prospectively
examined the cardioprotective effects of colchicine 0.5 mg daily
versus placebo in individuals with stable coronary artery disease,
of which 30% had T2DM and over two-thirds were using anti-
hypertensive therapy (and thus had components of the metabolic
syndrome). The primary outcome - composite incidence of acute
coronary syndrome, out-of-hospital cardiac arrest, or noncar-
dioembolic ischemic stroke — was significantly decreased in the
colchicine arm (5.3% versus 16.0%, hazard ratio: 0.33, 95% confi-
dence interval 0.18-0.59), lending further credence to colchicine’s
beneficial effects in MetS. However, neither inflammatory markers,
nor BMI, were reported [99].

Colchicine’s long-term safety and tolerability has been estab-
lished in multiple studies and colchicine is FDA-approved for
chronic use to prevent recurrent attacks of gout or Familial
Mediterranean Fever [88,100,101]. Colchicine should therefore be
a relatively safe compound with which to test the hypothesis that
reducing inflammation can improve obesity-associated comorbid
conditions. Colchicine, taken at the FDA-approved dose of 0.6 mg
twice daily, should block NLRP3 inflammasome assembly, reduce
markers of inflammation, and improve metabolic dysfunction in
obese subjects with MetS and low-level inflammation. Theoreti-
cally, lower doses (e.g. 0.6 mg once daily) may also be effective
and safer over the long term, but warrants further study. The
LoDoCo study has shown that colchicine demonstrates benefit in
secondary cardiovascular prevention with a low risk of side effects,
even when taken in conjunction with anti-platelet agents and sta-
tins [99]. However, it remains to be seen if colchicine, in isolation
or in conjunction with other agents, can also be beneficial in the
primary prevention of T2DM or CVD in at-risk individuals.

4. Conclusions

It is well established that, as compared to lean individuals,
those with obesity have a higher levels of chronic inflammation.
This low-level inflammatory state can lead to impaired functioning
of metabolic pathways within peripheral, hepatic, and pancreatic
tissues, eventually leading to insulin resistance and T2DM. Thera-
pies targeted to inhibit obesity-induced chronic inflammation in
mouse models have been successfully shown to prevent or
improve metabolic dysregulation, but in humans the results have
not been as impressive. A lack of efficacy from targeted
immunotherapies may stem from redundancies in the human
immune system downstream of the NLRP3 inflammasome.
Because colchicine inhibits inflammation more proximally, at the
level of NLRP3 inflammasome activation, it presents as an intrigu-
ing potential treatment for individuals with metabolic syndrome.
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