ELSEVIER

Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation

Andrew P. Demidowich*, Angela I. Davis, Nicket Dedhia, Jack A. Yanovski

Section on Growth and Obesity, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, United States

ARTICLE INFO

Article history: Received 28 December 2015 Accepted 22 April 2016

ABSTRACT

Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possibly because targeted interventions were too far downstream of the inciting inflammatory events. Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein member of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the necessary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its activation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout, mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to attenuate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these findings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause improvements in insulin sensitivity and other obesity-related metabolic impairments.

Published by Elsevier Ltd.

1. Introduction

Obesity is the third most common cause of preventable death in the US, and is a major risk factor for the development of insulin resistance (IR), type 2 diabetes (T2DM), dyslipidemia, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD) [1–3]. Although the link between obesity and its comorbid conditions appears to be multifactorial, inflammation plays a prominent role through its effects in adipocytes, pancreatic islet cells, and vascular smooth muscle [4–8].

To date, most strategies for improving obesity and its resultant maladies have focused on weight loss. Lifestyle modification alone has been shown to decrease weight and reduce cardiovascular risk factors [9]; however, sustained success rates are insufficient in community programs, weight regain is frequent, and even intensive behavioral programs have not been shown to reduce

E-mail address: andrew.demidowich@nih.gov (A.P. Demidowich).

long-term cardiovascular mortality [10,11]. Bariatric surgery, which may be effective, is an expensive, invasive procedure and is not without morbidity. Moreover, up to 50% of individuals may have at least some long-term weight regain and a return of metabolic abnormalities [12,13]. Few medications are currently FDA approved for weight loss in obesity, and none have been shown to reduce mortality [14].

Additional medical treatment options for preventing the complications of obesity are therefore urgently needed. Our increasing understanding of the underlying inflammatory mechanisms that link obesity, metabolic dysregulation, and cardiovascular disease allow us to propose a novel therapeutic strategy that may help break the link between obesity and its metabolic complications.

2. The hypothesis

We hypothesize that interfering with the inflammatory cascade activated by obesity will help uncouple obesity from its comorbid conditions. Therefore, disrupting the assembly of the NOD-like receptor, pyrin domain containing 3 (NLRP3) inflammasome using the ancient medication colchicine will improve metabolic

^{*} Corresponding author at: Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Hatfield Clinical Research Center (CRC), Room 1-3330, MSC 1103, Bethesda, MD 20892-1103, United States.

dysregulation via suppression of obesity-related, NLRP3-induced inflammation among obese adults with metabolic syndrome (MetS).

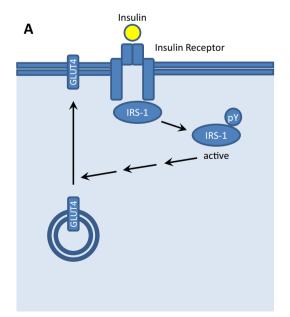
3. Evaluation of hypothesis

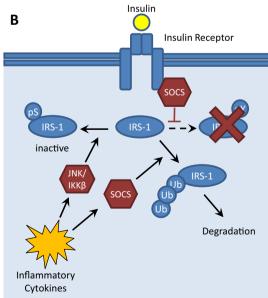
3.1. Inflammation is associated with metabolic dysregulation

Inflammation likely leads to metabolic dysregulation through several concomitant pathways. In skeletal, adipose, and hepatic tissues, inflammatory cytokines such as interleukin (IL)-1 β , IL-6, and tumor necrosis factor α (TNF α) activate serine kinases Jun Nterminal kinase (JNK), inhibitor of kappa B kinase (IKK- β), and protein kinase C (PKC) [15–17]. These kinases in turn serine-phosphorylate and deactivate insulin receptor substrate-1 (IRS-1), an important downstream mediator of insulin action, leading to insulin resistance (Fig. 1) [18–21]. The IKK complex also activates NF- κ B, further promoting inflammatory gene expression (15). Additionally, the expression of suppressor of cytokine signaling (SOCS) proteins, which target IRS-1 and IRS-2 for ubiquitin-mediated degradation [22], are induced.

Low-grade systemic inflammation can also impair pancreatic islet cell functioning and insulin secretion. In early stages of β -cell dysfunction, inflammatory cytokines disrupt the proper intracellular calcium storage and flux necessary for adequate insulin secretion [6,7]. Chronically, inflammatory signaling via the NF- κ B and mitogen-activated protein kinase (MAPK) pathways leads to mitochondrial stress, reactive oxygen species (ROS) formation, and eventual β -cell apoptosis [23,24]. It is this eventual islet cell depletion that moves the at-risk individual from obesity to insulin resistance to frank diabetes [25,26].

3.2. Obesity is associated with inflammation


Many mouse and human studies have demonstrated the association of obesity with inflammation. Obesity results when mice are fed a high-fat diet (HFD), and such HFD mice demonstrate increased levels of insulin resistance and inflammatory cytokines and chemokines, including IL-1β, IL-6, IL-18, TNFα, monocyte


chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), and macrophage migration inhibitory factor (MIF), as compared to lean mice [27–32]. Similarly, in cross-sectional human studies, circulating markers of inflammation have been associated with increasing obesity [33–37], and this proinflammatory phenotype is already present among children with obesity [38–40]. Weight loss, either by lifestyle modification or bariatric surgery, decreases this inflammatory state [21,38,41–43].

The sources of the chronic low-grade inflammation of obesity arise from multiple organs, but it appears that adipose tissue itself is a large contributor to the inflammatory process. Adipose tissue consists of adipocytes and the stromal vascular fraction (SVF), which includes fibroblasts, vascular tissue, and adipose tissue macrophages. In lean individuals, macrophages comprise less than 10% of the cells in adipose tissue [44]. The adipocytes themselves are small in volume and secrete high levels of adiponectin and omega-3 fatty acids, which predispose the macrophages to differentiate to an anti-inflammatory phenotype. Such M2 macrophages release immunosuppressive cytokines, such as IL-10 and TGFB, which act on fat and muscle tissue to enhance insulin sensitivity [45]. However, in obese individuals, adipocytes are both greater in volume and number, leading to inefficient triglyceride storage and increased levels of circulating fatty acids and ceramides [46]. These molecules bind to pattern recognition receptors in adipose tissue macrophages and stimulate differentiation to a proinflammatory M1 phenotype [47]. Chronic inflammation ensues, with an increased release of chemokines and cytokines including TNFα, IL-1β, IL-6, IL-18, plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1 (MCP-1), and reactive oxygen species (ROS) [47-49]. These factors further augment adipose tissue inflammation by recruiting additional adipose tissue macrophages as well as B and T cells [30].

3.3. Proof of concept studies that reducing inflammation can improve obesity-related metabolic dysfunction

If inflammation is a significant cause of obesity-related metabolic dysregulation, then anti-inflammatory agents should reverse

Fig. 1. (A) Insulin binding to its receptor stimulates tyrosine phosphorylation and activation of IRS-1 in adipocytes and myocytes. The resultant signaling cascade leads to GLUT4 sequestration vesicle trafficking to the plasma membrane, allowing for glucose entry into the cell. (B) Inflammation promotes insulin resistance by interfering with this pathway. Specifically, JNK and IKKβ inactivate IRS-1 via serine phosphorylation, while SOCS proteins prevent IRS-1 tyrosine phosphorylation and promote IRS-1 ubiquitination and subsequent degradation.

obesity's inflammation-related complications. This has been the case for some mouse models of obesity. HFD mice treated with a neutralizing IL-1 β antibody demonstrate significant improvement of glycemic control and beta cell function [23], with no effect on weight gain or food intake [50]. Given prophylactically, IL-1 β antibody treatment helps prevent the onset of fasting hyperglycemia and insulin resistance in HFD mice. IL-1 receptor antagonist (IL-1Ra) treatment of DIO mice leads to similar results, with decreased β -cell apoptosis, increased β -cell proliferation, and improved glucose-stimulated insulin secretion [50,51]. Studies inducing blockade of other inflammatory cytokines or pathways in mice, including TNF α [52], IL-6 [53], MCP-1 [54], MIF [31], and NF-kB [55] have also demonstrated favorable metabolic results from reduction of inflammatory processes.

However, such robust results have not been replicated in human clinical trials. Blockade of TNF α had no effect on metabolic parameters of participants with T2DM [52] and only marginal impact in subjects who were non-diabetic but insulin-resistant [56]. Similar findings were seen when using aspirin or the anti-IL-1 β antibody canakinumab [57–59]. A different monoclonal anti-IL-1 β antibody, gevokizumab, led to improvements in HbA1c, but not beta-cell secretory function or insulin sensitivity in preliminary trials [60]. Anakinra, a recombinant human IL-1Ra, improved beta-cell secretory function and decreased Hemoglobin A1c in subjects with diabetes [61], but not in those with impaired glucose tolerance [62]. Furthermore, anakinra did not affect insulin sensitivity as measured by insulin clamp or HOMA-IR in either study.

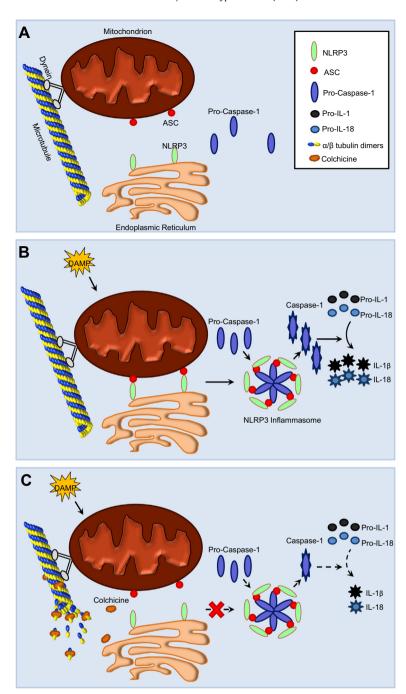
Although these results are disappointing, they are not wholly unexpected. The machinery involved in obesity-induced chronic inflammation is complex. Cytokines may play complementary, if not redundant, roles in promoting human inflammation. Chemokines and endothelial adhesion molecules play integral roles in the sustained inflammatory response by facilitating chemoattraction, diapedesis, and migration of additional leukocytes to adipose and pancreatic tissues. For this reason, eliminating a single cytokine may not be sufficient to cause significant changes in human glucose homeostasis. Notably, high-dose salicylate therapy, which exerts its anti-inflammatory effects through several concomitant pathways [63–65], did lower hemoglobin A1c and triglyceride concentrations in subjects with T2DM [66]. However, concerns over long-term safety and tolerability have precluded its use for metabolic dysregulation in routine clinical practice.

3.4. NLRP3 mediates inflammatory activation in obesity

A member of the innate immune system, the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has been implicated as a major source of the chronic inflammation seen in obesity. NLRP3 (also known as cryopyrin or NALP3) is primarily expressed in monocytes and macrophages, with little production seen in other leukocytes or adipocytes [21,67]. Many danger-associated molecular pattern (DAMP) molecules commonly seen in obesity, such as monosodium urate (MSU) crystals [68], cholesterol crystals [69], islet amyloid polypeptide [70], oxidized low density lipoprotein (LDL) [71], or saturated free fatty acids [72], can induce NLRP3 inflammasome formation. NLRP3 does not bind with DAMPs directly, but rather is stimulated through a second-messenger [73]. Upon activation by DAMPs, the endoplasmic reticulum-based NLRP3 comes into apposition with the mitochondrially-bound adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC; also known as PYCARD) and procaspase-1 to form a multiprotein inflammasome complex (Fig. 2) [74-76]. Microtubules serve as the roadways for the subcellular transport of these molecules within the macrophages and are necessary for proper cytosolic localization and activation of the inflammasome components [76].

The formation of this inflammasome leads to cleavage of procaspase-1 to its active form, caspase-1, which in turn cleaves inactive pro-IL-1 and pro-IL-18 into their active forms [77]. IL-1 β initiates the acute phase response and triggers the production and secretion of other pro-inflammatory cytokines, such as TNF α , IL-6, and MCP-1, resulting in a progressively amplified cytokine network [78]. IL-18, meanwhile, induces the production of interferon gamma (IFN γ), IL-10, toll-like receptor 4 (TLR4), Fas ligand, and vascular cell adhesion molecule-1 (VCAM1) [79,80].

In mouse models, *Nlrp3* and *IL1b* expression in adipose tissue is positively correlated with body weight and adiposity, and food restriction results in significant decreases in their expression (21). Importantly, knocking out components of the NLRP3 inflammasome (e.g. *Nlrp3*^{-/-}, *ASC*^{-/-}, *caspase-1*^{-/-} and *IL1b*^{-/-}) in mice prevents the development of insulin resistance and inflammatory cytokine expression during a protracted high fat diet (HFD) state [21,27,81,82]. Additionally, ablation of the NLRP3 inflammasome results in markedly smaller adipocytes, elevated levels of adipose GLUT4 and adiponectin, and decreased inhibition of IRS-1 [21,83]. Caspase-1 knockout mice demonstrate increased fat oxidation and gain significantly less body weight than wild-type mice during a 10-week HFD regimen, despite similar food intake [27].


In human trials, NLRP3 activation has also been positively correlated with adiposity and metabolic dysregulation. Obese individuals with MetS have greater levels of NLRP3 activity and *IL1b* expression, increased numbers of adipose tissue macrophages, and decreased numbers of regulatory T cells in their visceral adipose tissue than either metabolically healthy obese or lean individuals [84]. Among obese subjects with T2DM, weight loss leads to decreased mRNA expression of *IL1b* and *NLRP3* and enhanced insulin sensitivity [21].

3.5. Colchicine can inhibit NLRP3 inflammasome activation

As noted above, microtubules serve as the mechanism for the subcellular transport of ASC and NLRP3 within macrophages and are necessary for proper cytosolic localization and activation of the inflammasome components [74,76]. Thus, molecules that affect microtubular function can potentially alter NLRP3 inflammasome assembly and function.

Colchicine, a potent inhibitor of tubule polymerization, has been used for centuries to treat inflammatory disorders such as gout, and more recently Familial Mediterranean Fever [85], Behcet's Disease [86], and pericarditis [87]. Colchicine is a tricyclic alkaloid derived from the flowering plant *Colchicum autumnale* [88], whose mechanism of action is to bind tubulin in a poorly reversible manner. At lower doses, this interferes with microtubule formation and elongation, and at higher concentrations it promotes microtubule depolymerization [89].

Classically it was thought that colchicine's microtubule disruption led to anti-inflammatory effects by inhibiting neutrophil chemotaxis, diminishing release of lysosomal enzymes during phagocytosis, and inhibiting the expression of adhesion molecules on the surface of endothelial cells and leukocytes [90–92]. However, recent *in vitro* and *in vivo* studies have suggested that a more important anti-inflammatory mechanism is colchicine's ability to hinder NLRP3 and ASC intracellular transportation and spatial arrangement, thereby inhibiting inflammasome activation within macrophages (Fig. 2B) [68,76]. Martinon, et al., demonstrated that culturing human monocytes with MSU or calcium pyrophosphate dihydrate (CPPD) crystals stimulated the production of activated IL-1β and IL-18 in an inflammasome-based manner. However, adding colchicine to the cultures blocked this IL-1β stimulation. Misawa, et al., showed that colchicine and nocodazole, another

Fig. 2. (A) Components of the NLRP3 inflammasome in a quiescent macrophage. (B) Microtubules mediate NLRP3 inflammasome formation by bringing the mitochondrially-based ASC into apposition with NLRP3, located on the surface of the endoplasmic reticulum. Inflammasome formation cleaves procaspase-1 to caspase-1, which in turn activates IL-1β and IL-18 and initiates the inflammatory cascade. (C) Colchicine blocks NLRP3 inflammasome formation and activation by inhibiting microtubule polymerization.

inhibitor of tubulin polymerization, suppressed IL-1 β production in mouse bone marrow-derived macrophages cultured with various NLRP3-inducers such as nigericin, ATP, silica, and MSU. Inducers of other inflammasomes, such as flagellin (NLRC4) or double-stranded DNA (AIM2), which do not depend on microtubules for activation, continued to demonstrate a robust inflammatory response in the presence of colchicine or nocodazole. Immunocytochemical analysis showed that stimulated bone marrow-derived macrophages cultured with nigericin or MSU resulted in subcellular approximation of mitochondrially-bound ASC to NLRP3, but not NLRC4 or AIM2. Pretreatment with colchicine prevented this colocalization, as evidenced by an $in\ situ$ proximity-ligation assay.

In vivo studies demonstrated that mice pretreated with colchicine prior to intraperitoneal injection with MSU demonstrated decreased levels of activated IL-1 β [76]. Colchicine thus has the potential to modulate numerous inflammatory pathways upstream of the agents previously tested to decrease inflammation in humans with obesity.

Given the complexity of the inflammatory orchestra associated with obesity, with cytokines, chemokines, leukocytes, and endothelial adhesion molecules all working in concert to promote a sustained response, colchicine's ability to affect multiple pathways may be a key characteristic to enable changes in glucose homeostasis and metabolic dysregulation. At doses used clinically

for gout (0.5–1.2 mg daily), colchicine can decrease inflammatory levels in patients with cardiovascular disease [93,94], and prevent recurrent gouty attacks [95], pericarditis [87], and restenosis in bare metal stents [96] in at-risk individuals. Moreover, at higher doses colchicine has been shown to decrease inflammatory levels and vascular endothelial markers in Familial Mediterranean Fever [85,91]. However, to date, there are scant prospective human clinical data focusing on the metabolic effects of using colchicine to inhibit obesity-induced inflammation. Two retrospective trials have demonstrated no long-term metabolic adverse consequences from colchicine use [97,98]; however, neither of these trials specifically examined its effects in those with obesity-induced inflammation. The LoDoCo (Low-Dose Colchicine) trial prospectively examined the cardioprotective effects of colchicine 0.5 mg daily versus placebo in individuals with stable coronary artery disease, of which 30% had T2DM and over two-thirds were using antihypertensive therapy (and thus had components of the metabolic syndrome). The primary outcome - composite incidence of acute coronary syndrome, out-of-hospital cardiac arrest, or noncardioembolic ischemic stroke - was significantly decreased in the colchicine arm (5.3% versus 16.0%, hazard ratio: 0.33, 95% confidence interval 0.18-0.59), lending further credence to colchicine's beneficial effects in MetS. However, neither inflammatory markers, nor BMI, were reported [99].

Colchicine's long-term safety and tolerability has been established in multiple studies and colchicine is FDA-approved for chronic use to prevent recurrent attacks of gout or Familial Mediterranean Fever [88,100,101]. Colchicine should therefore be a relatively safe compound with which to test the hypothesis that reducing inflammation can improve obesity-associated comorbid conditions. Colchicine, taken at the FDA-approved dose of 0.6 mg twice daily, should block NLRP3 inflammasome assembly, reduce markers of inflammation, and improve metabolic dysfunction in obese subjects with MetS and low-level inflammation. Theoretically, lower doses (e.g. 0.6 mg once daily) may also be effective and safer over the long term, but warrants further study. The LoDoCo study has shown that colchicine demonstrates benefit in secondary cardiovascular prevention with a low risk of side effects. even when taken in conjunction with anti-platelet agents and statins [99]. However, it remains to be seen if colchicine, in isolation or in conjunction with other agents, can also be beneficial in the primary prevention of T2DM or CVD in at-risk individuals.

4. Conclusions

It is well established that, as compared to lean individuals, those with obesity have a higher levels of chronic inflammation. This low-level inflammatory state can lead to impaired functioning of metabolic pathways within peripheral, hepatic, and pancreatic tissues, eventually leading to insulin resistance and T2DM. Therapies targeted to inhibit obesity-induced chronic inflammation in mouse models have been successfully shown to prevent or improve metabolic dysregulation, but in humans the results have not been as impressive. A lack of efficacy from targeted immunotherapies may stem from redundancies in the human immune system downstream of the NLRP3 inflammasome. Because colchicine inhibits inflammation more proximally, at the level of NLRP3 inflammasome activation, it presents as an intriguing potential treatment for individuals with metabolic syndrome.

Conflict of interest statement

The authors report no competing interests.

Sources of funding

This research was supported by the Division of Intramural Research of the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development (NICHD), NIH ZIAHD00641 (to JAY) with supplemental funding from an NICHD Director's Investigator Award (to JAY and APD). Dr. Yanovski reports receiving grant funding from Zafgen Inc. for a clinical trial of pharmacotherapy to treat obesity and hyperphagia in patients with the Prader–Willi syndrome. No sponsors were involved in the collection, analysis, or interpretation of data; writing of the manuscript; or decision to submit the manuscript for publication.

Acknowledgements

This research was supported by the Division of Intramural Research of the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development (NICHD), NIH ZIAHD00641 (to JAY) with supplemental funding from an NICHD Director's Investigator Award (to JAY and APD). Dr. Yanovski reports receiving Grant funding from Zafgen Inc. for a clinical trial of pharmacotherapy to treat obesity and hyperphagia in patients with the Prader–Willi syndrome. No sponsors were involved in the collection, analysis, or interpretation of data; writing of the manuscript; or decision to submit the manuscript for publication.

Dr. Yanovski is a Commissioned Officer in the United States Public Health Service (PHS). The opinions and assertions expressed herein are those of the authors and are not to be construed as reflecting the views of the PHS or the DHHS.

References

- [1] Murphy NF, MacIntyre K, Stewart S, Hart CL, Hole D, McMurray JJ. Long-term cardiovascular consequences of obesity: 20-year follow-up of more than 15 000 middle-aged men and women (the Renfrew-Paisley study). Eur Heart J 2006;27:96–106.
- [2] Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999–2004. Jama-J Am Med Assoc 2006;295:1549–55.
- [3] Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The national health and nutrition examination surveys, 1960–1991. JAMA J Am Med Assoc 1994;272:205–11.
- [4] Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 2007;292:E166–74.
- [5] Gao Z, Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002;277:48115–21.
- [6] Ramadan JW, Steiner SR, O'Neill CM, Nunemaker CS. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell Calcium 2011;50:481–90.
- [7] Dula SB, Jecmenica M, Wu R, et al. Evidence that low-grade systemic inflammation can induce islet dysfunction as measured by impaired calcium handling, Cell Calcium 2010;48:133–42.
- [8] Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009;54:2129–38.
- [9] Clement K, Viguerie N, Poitou C, et al. Weight loss regulates inflammationrelated genes in white adipose tissue of obese subjects. Faseb J 2004;18:1657–69.
- [10] Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013;369:145–54.
- [11] Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 2009;374:1677–86.
- [12] Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes Surg 2008;18:648–51.
- [13] Steffen R, Potoczna N, Bieri N, Horber FF. Successful multi-intervention treatment of severe obesity: a 7-year prospective study with 96% follow-up. Obes Surg 2009;19:3–12.
- [14] Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA J Am Med Assoc 2014;311:74–86.
- [15] Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004;3:17–26.
- [16] Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860-7.

- [17] Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87:565–76.
- [18] Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333–6.
- [19] Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–8.
- [20] Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183–90.
- [21] Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011;17:179–88.
- [22] Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002;277:42394–8.
- [23] Osborn O, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine 2008;44:141–8.
- [24] Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011;91:795–826.
- [25] Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–10.
- [26] Donath MY, Ehses JA, Maedler K, et al. Mechanisms of beta-cell death in type 2 diabetes. Diabetes 2005;54(Suppl 2):S108–13.
- [27] Stienstra R, Joosten LA, Koenen T, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 2010;12:593–605.
- [28] McGillicuddy FC, Harford KA, Reynolds CM, et al. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011;60:1688–98.
- [29] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87–91.
- [30] Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–505.
- [31] Finucane OM, Reynolds CM, McGillicuddy FC, et al. Macrophage migration inhibitory factor deficiency ameliorates high-fat diet induced insulin resistance in mice with reduced adipose inflammation and hepatic steatosis. PLoS ONE 2014;9:e113369.
- [32] Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 1996;97:37-46.
- [33] Festa A, D'Agostino Jr R, Williams K, et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001;25:1407–15.
- [34] Pannacciulli N, Cantatore FP, Minenna A, Bellacicco M, Giorgino R, De Pergola G. C-reactive protein is independently associated with total body fat, central fat, and insulin resistance in adult women. Int J Obes Relat Metab Disord 2001;25:1416–20.
- [35] Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 2005;69:29–35.
- [36] Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA: J Am Med Assoc 1999:282:2131–5.
- [37] Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest 2007;30:210–4.
- [38] Reinehr T, Stoffel-Wagner B, Roth CL, Andler W. High-sensitive C-reactive protein, tumor necrosis factor alpha, and cardiovascular risk factors before and after weight loss in obese children. Metabolism 2005;54:1155–61.
- [39] Roth CL, Kratz M, Ralston MM, Reinehr T. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism 2011;60:445–52.
- [40] Giordano P, Del Vecchio GC, Cecinati V, et al. Metabolic, inflammatory, endothelial and haemostatic markers in a group of Italian obese children and adolescents. Eur J Pediatr 2011;170:845–50.
- [41] Fisher G, Hyatt TC, Hunter GR, Oster RA, Desmond RA, Gower BA. Markers of inflammation and fat distribution following weight loss in African-American and white women. Obesity (Silver Spring) 2012;20:715–20.
- [42] Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg 2012;22:950-5.
- [43] Lasselin J, Magne E, Beau C, et al. Adipose inflammation in obesity: relationship with circulating levels of inflammatory markers and association with surgery-induced weight loss. J Clin Endocrinol Metab 2014;99:E53–61.

- [44] Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003:112:1796–808.
- [45] Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012;249:218–38.
- [46] Puri V, Ranjit S, Konda S, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008;105:7833–8.
- [47] Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–84.
- [48] Clement K, Viguerie N, Poitou C, et al. Weight loss regulates inflammationrelated genes in white adipose tissue of obese subjects. FASEB J 2004:18:1657–69.
- [49] Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007;56:16–23.
- [50] Owyang AM, Maedler K, Gross L, et al. XOMA 052, an anti-IL-1β monoclonal antibody, improves glucose control and β-cell function in the diet-induced obesity mouse model. Endocrinology 2010;151:2515–27.
- [51] Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 2008;149:2208-18.
- [52] Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996;45:881–5.
- [53] Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 2005;146:3417–27.
- [54] Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115–24.
- [55] Kim JE, Lee MH, Nam DH, et al. Celastrol, an NF-kappaB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS ONE 2013:8:e62068.
- [56] Stanley TL, Zanni MV, Johnsen S, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab 2011;96:E146–50.
- [57] Pradhan AD, Cook NR, Manson JE, Ridker PM, Buring JE. A randomized trial of low-dose aspirin in the prevention of clinical type 2 diabetes in women. Diabetes Care 2009;32:3–8.
- [58] Ridker PM, Howard CP, Walter V, et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 2012;126:2739–48.
- [59] Rissanen A, Howard CP, Botha J, Thuren T. Effect of anti-IL-1beta antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diab Obes Metab 2012;14:1088–96.
- [60] Cavelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 2012;35:1654–62.
- [61] Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007;356:1517–26.
- [62] van Asseldonk EJ, Stienstra R, Koenen TB, Joosten LA, Netea MG, Tack CJ. Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2011:96:2119-26.
- [63] Abramson S, Korchak H, Ludewig R, et al. Modes of action of aspirin-like drugs. Proc Natl Acad Sci USA 1985:82:7227–31.
- [64] Pillinger MH, Capodici C, Rosenthal P, et al. Modes of action of aspirin-like drugs: salicylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc Natl Acad Sci USA 1998;95:14540–5.
- [65] Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994:265:956-9.
- [66] Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2010;152:346–57.
- [67] Guarda G, Zenger M, Yazdi AS, et al. Differential expression of NLRP3 among hematopoietic cells. J Immunol 2011;186:2529–34.
- [68] Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006;440:237–41.
- [69] Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010;464:1357-61.
- [70] Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 2010;11:897–904.
- [71] Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1beta by macrophages via reactive oxygen speciesdependent NLRP3 inflammasome activation. Biochem Biophys Res Commun 2012;425:121–6.
- [72] Legrand-Poels S, Esser N, L'Homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 2014;92:131–41.

- [73] Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013;38:1142–53.
- [74] Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011;469:221–5.
- [75] Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 2013;153:348–61.
- [76] Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 2013;14:454–60.
- [77] Barker BR, Taxman DJ, Ting JP. Cross-regulation between the IL-1beta/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 2011;23:591-7.
- [78] Dinarello CA. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol 2011;41:1203–17.
- [79] Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol 2013;4:289.
- [80] Dias-Melicio LA, Fernandes RK, Rodrigues DR, Golim MA, Soares AM. Interleukin-18 increases TLR4 and mannose receptor expression and modulates cytokine production in human monocytes. Mediators Inflamm 2015;2015;236839.
- [81] Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011;12:408-15.
- [82] Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 2011;152:4039-45.
- [83] Stienstra R, van Diepen JA, Tack CJ, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA 2011;108:15324–9.
- [84] Esser N, L'Homme L, De Roover A, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013;56:2487–97.
- [85] Kiraz S, Ertenli I, Arici M, et al. Effects of colchicine on inflammatory cytokines and selectins in familial Mediterranean fever. Clin Exp Rheumatol 1998:16:721–4.
- [86] Miyachi Y, Taniguchi S, Ozaki M, Horio T. Colchicine in the treatment of the cutaneous manifestations of Behcet's disease. Br J Dermatol 1981;104:67–9.
- [87] Imazio M, Brucato A, Cemin R, et al. Colchicine for recurrent pericarditis (CORP): a randomized trial. Ann Intern Med 2011;155:409–14.

- [88] Yang LP. Oral colchicine (Colcrys): in the treatment and prophylaxis of gout. Drugs 2010;70:1603–13.
- [89] Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 2008:28:155–83.
- [90] Nuki G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr Rheumatol Rep 2008;10:218–27.
- [91] Sari I, Yuksel A, Kozaci D, et al. The effect of regular colchicine treatment on biomarkers related with vascular injury in newly diagnosed patients with familial Mediterranean fever. Inflammation 2012;35:1191–7.
- [92] Ben-Chetrit E, Bergmann S, Sood R. Mechanism of the anti-inflammatory effect of colchicine in rheumatic diseases: a possible new outlook through microarray analysis. Rheumatology (Oxford) 2006;45:274–82.
- [93] Nidorf M, Thompson PL. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am | Cardiol 2007;99:805–7.
- [94] Deftereos S, Giannopoulos G, Kossyvakis C, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J Am Coll Cardiol 2012;60:1790–6.
- [95] Yu TF, Gutman AB. Efficacy of colchicine prophylaxis in gout. Prevention of recurrent gouty arthritis over a mean period of five years in 208 gouty subjects. Ann Intern Med 1961;55:179–92.
- [96] Defereos S, Giannopoulos G, Raisakis K, et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol 2013;61:1679–85.
- [97] Burstein R, Seidman DS, Zemer D, et al. Chronic colchicine treatment does not impair glucose tolerance in familial Mediterranean fever patients. Eur J Clin Pharmacol 1997;52:27–30.
- [98] Wang L, Sawhney M, Zhao Y, Carpio GR, Fonseca V, Shi L. Association between colchicine and risk of diabetes among the veterans affairs population with gout. Clin Ther 2015;37:1206–15.
- [99] Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 2013;61:404–10.
- [100] Zemer D, Livneh A, Danon YL, Pras M, Sohar E. Long-term colchicine treatment in children with familial Mediterranean fever. Arthritis Rheum 1991;34:973–7.
- [101] Levy M, Eliakim M. Long-term colchicine prophylaxis in familial Mediterranean fever. Br Med J 1977;2:808.