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SUMMARY

Brown adipose tissue (BAT) is a metabolically active
organ that contributes to the maintenance of sys-
temic metabolism. The sympathetic nervous system
plays important roles in the homeostasis of BAT and
promotes its browning and activation. However, the
role of other neurotransmitters in BAT homeostasis
remains largely unknown. Our metabolomic analyses
reveal that gamma-aminobutyric acid (GABA) levels
are increased in the interscapular BAT of mice with
dietary obesity. We also found a significant increase
in GABA-type B receptor subunit 1 (GABA-BR1) in
the cell membranes of brown adipocytes of dietary
obese mice. When administered to obese mice,
GABA induces BAT dysfunction together with sys-
temic metabolic disorder. Conversely, the genetic
inactivation or inhibition of GABA-BR1 leads to the
re-browning of BAT under conditions of metabolic
stress and ameliorated systemic glucose intoler-
ance. These results indicate that the constitutive
activation of GABA/GABA-BR1 signaling in obesity
promotes BAT dysfunction and systemic metabolic
derangement.

INTRODUCTION

The worldwide prevalence of obesity remains high, and new

therapies to treat obesity-related pathologies are urgently

needed (NCD Risk Factor Collaboration (NCD-RisC), 2017).

Brown adipose tissue (BAT) was initially characterized as a ther-

mogenic organ in small rodents and human infants (Dawkins and

Scopes, 1965; Smith and Roberts, 1964). However, it has been
Cell Repo
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recently reported that adult humans also possess functional

BAT, and studies have shown that it is a metabolically active

organ with the potential to regulate systemic metabolism (Bartelt

et al., 2011; Jespersen et al., 2013; Stanford et al., 2013). Meta-

bolic stress is reported to promote the whitening of BAT, which

is associated with its dysfunction and with the development

of systemic metabolic derangement (Shimizu et al., 2014). The

conversion of white adipose tissue (WAT) to thermogenic

brown adipose (commonly called ‘‘browning’’) continues to be

an important focus of research (Harms and Seale, 2013; Shinoda

et al., 2015), along with the search for mechanisms that can sup-

press the ‘‘whitening’’ of BAT and its functional decline, in rela-

tion to the exploration of next-generation therapies for obesity

and diabetes (Shimizu and Walsh, 2015).

The sympathetic nervous system and adrenergic signaling are

critically important for the activation of BAT and for maintaining

its homeostasis (Harms and Seale, 2013). The inhibition of pe-

ripheral serotonin synthesis has recently been shown to promote

BAT thermogenesis, reduce obesity, and ameliorate systemic

metabolic dysfunction (Crane et al., 2015). However, the role of

other neurotransmitters in BAT is largely unknown. Gamma-ami-

nobutyric acid (GABA) is the best characterized inhibitory neuro-

transmitter in the brain and mainly mediates its biological effects

by suppressing neuronal excitability (Ko et al., 2015). There is

evidence that GABA in the CNS is involved in the regulation of

systemic metabolism. For example, the activation of GABAA-

receptor-mediated signaling in the lateral hypothalamus sup-

presses food intake and reduces body weight, and suppression

of this signaling pathway promotes eating (Turenius et al., 2009).

Agouti-related peptide (AgRP) and neuropeptide Y (NPY) neu-

rons stimulate eating and are mostly GABAergic, and the genetic

inactivation of GABA transporter expression in AgRP neurons

results in a lean phenotype (Tong et al., 2008). The anti-obesity

effect of leptin was reported to be mediated by the synaptic

release of GABA from hypothalamic GABAergic neurons that
rts 24, 2827–2837, September 11, 2018 ª 2018 The Authors. 2827
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Figure 1. Evidence that GABA and GABA-BR1 Signals Are Increased in BAT under a Metabolic Stress

(A and B) H&E staining (A) and body weight (BW)-adjusted weight (B) of brown adipose tissue (BAT) from wild-type mice fed normal chow (NC) or a high-fat diet

(HFD) (n = 4 and 4). In the HFD group, mice were fed the diet from 4 weeks of age and analyzed at 17 weeks of age. The scale bars represent 100 mm.

(C–E) BAT of wild-type mice with dietary obesity was subjected to metabolomic analyses with capillary electrophoresis-mass spectrometry (CE-MS) (n = 5 each).

These mice were fed the HFD from 4 weeks of age and analyzed at 12 weeks of age. ND, not detected. GABA, gamma-aminobutyric acid; NE, norepinephrine;

5-HT, serotonin; ACh, acetylcholine; Epi, epinephrine; Dopa, dopamine; Melatonin (C), Asn, asparagine; Histamine (D) and Taurine; Glu, glutamic acid; Gly,

glycine; Asp, aspartic acid (E).

(legend continued on next page)
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also express leptin receptors, and suppression of this system

leads to overeating and obesity (Xu et al., 2012). GABA is also

detected in various peripheral organs, including the pancreas,

endothelium, gastrointestinal tract, adrenal medulla, and

placenta (Gladkevich et al., 2006; Sen et al., 2016). In patients

with diabetes, GABA is reportedly decreased in the pancreas

(Al-Salam et al., 2009). GABA promotes insulin secretion from

the pancreas in normal rats, and this response is suppressed

in the diabetic state (Adeghate and Ponery, 2002). Recently,

GABAA-receptor-mediated signaling was shown to promote

the transformation of a cells to functional b-like cells in pancre-

atic islets, thereby contributing to the suppression of patholog-

ical changes linked to diabetes (Li et al., 2017). In contrast to

the known effects of GABA in the CNS, its peripheral role is yet

to be defined.

Here, we report a metabolomic analysis that identified several

representative neurotransmitters in the interscapular BAT of

mice, among which only GABA showed an increase in response

to obesity and metabolic stress. Our in vivo and in vitro findings

show that GABA/GABA-BR1 signaling promotes BAT dysfunc-

tion and contributes to the development of systemic metabolic

derangement in obesity.

RESULTS

GABA andGABA-BR1Are Increased in BAT under Obese
Conditions
We generated a mouse model of dietary obesity by maintaining

C57BL/6NCr mice on a high-fat diet (HFD) (Figure S1A). This

diet promoted the whitening of interscapular BAT and was

associated with increased weight of this tissue, as reported

previously (Figures 1A, 1B, and S1B; Shimizu et al., 2014).

Adrenergic signaling is well known to have a central role in

maintaining BAT homeostasis by promoting its browning

and activation, but the influence of other neurotransmitters is

largely unknown, especially with regard to the response to

stress.

To address this question, we performed metabolomic ana-

lyses of interscapular BAT from mice using capillary electropho-

resis-mass spectrometry (CE-MS). This analysis showed that

norepinephrine levels were reduced in interscapular BAT by

metabolic stress (Figure 1C). Among the neurotransmitters iden-

tified in this analysis, GABA was the only one to be increased

in the interscapular BAT of mice with dietary obesity (Figures

1C–1E). GABA has been extensively studied in the CNS, but its

role in adipose tissue is mostly unknown; we therefore further
(F) Immunofluorescent staining for gamma-aminobutyric acid type B receptor su

dietary obesity (HFD) that were generated as described above. Nuclei and plasma

lectin (green). The right panel shows quantification of the data (n = 4 and 4).

(G) Western blot analysis of GABA-BR1 in the cell membranes of BAT from wild-

relative to the ATPase loading control (n = 3 and 3).

(H) Transcripts for GABA-BR1 (Gabbr1) in BAT of mice (24–28 weeks old) fed NC

(I) Transcripts for GABBR1 in human supraclavicular BAT.

Samples obtained from 19 individuals were studied. Initially, data were divided in

GABBR1 levels were compared between the high and lowUCP1 groups (n = 9 and

Student’s t test. *p < 0.05; **p < 0.01. Values represent themean ±SEM.NS, not sig

from one of three independent series of experiments (F) or from three independe
characterized the influence of GABA in BAT. Immunofluores-

cence showed that GABA immunoreactivity was increased in

interscapular BAT from obese mice (Figure S1C). We also found

that metabolic stress increased GABA type B receptor subunit 1

(GABA-BR1) expression in the cell membranes of brown adipo-

cytes in vivo (Figures 1F and 1G). GABA-BR1 (Gabbr1) tran-

scripts were significantly increased in whole-tissue lysates of

BAT from HFD-fed mice under metabolic stress (Figure 1H).

Next, we analyzed GABA-BR1 levels in supraclavicular BAT

samples obtained from 19 human volunteers (BMI = 18–31).

Initially, they were divided intoUCP1 high andUCP1 low groups,

as described by Jespersen et al. (2013). Uncoupling protein 1

(UCP-1) is a mitochondrial protein responsible for thermogenic

respiration (Nedergaard et al., 2001). When the GABBR1 levels

of the high and low UCP1 groups were compared, we found

GABBR1 levels to be significantly higher in individuals with

low UCP1 expression (Figure 1I). These results indicated that

GABA/GABA-BR1 signaling might have biological effects on

brown adipocytes in rodents and humans, especially in the

presence of obesity.

The next issue we addressed was the origin of increased

GABA in BAT associated with obesity. Our metabolomic analysis

showed that circulating GABA levels do not increasewith obesity

(Figure S1D). In addition, the denervation of the sympathetic

supply to interscapular BAT reduced norepinephrine to unde-

tectable levels in BAT from both lean and obese groups (Fig-

ure S1E) but had little effect on GABA levels (Figure S1F). These

findings suggest that GABA in BAT mainly derives from non-

sympathetic nerves. We also investigated whether GABA was

generated from glutamate by the GABA shunt in brown adipo-

cytes. It has been reported that GABA is generated from gluta-

mate by glutamate decarboxylase in pancreatic b cells (Li

et al., 2013; Prentki et al., 2013), and this pathway also exists

in the brain (Patel et al., 2005). In lean wild-type (WT) mice and

mice with dietary obesity, glutamate decarboxylase protein

was detected in the brain, but not in the BAT (Figure S1G). In

addition, transcripts for glutamate decarboxylase 1 (Gad1) or

glutamate decarboxylase 2 (Gad2) were detected in the brain,

but not in the BAT of either lean WT mice or mice with dietary

obesity, and transcripts were also not detected in differentiated

brown adipocytes in vitro (Figures S1H and S1I). However, low

expression of Gad1 (but not Gad2) transcripts was detected in

CD45+ cells extracted from the BAT of WT mice with dietary

obesity (Figures S1J and S1K), indicating that CD45+ immune

cells might make a minor contribution to GABA production in

BAT under metabolic stress.
bunit 1 (GABA-BR1) (red; scale bars = 20 mm) in BAT of 17-week-old mice with

membraneswere stainedwith Hoechst (blue) andwheat germ agglutinin (WGA)

type mice fed NC or a HFD. Right panel displays quantification of GABA-BR1

or a HFD were evaluated by qPCR (n = 17 and 14).

to high UCP1 and low UCP1 groups, as described by Jespersen et al. (2013).

10). Results were normalized for PPIA. All data were analyzed by the two-tailed

nificant. Data are from one independent series of experiment (A, B, C–E, andG)

nt series of experiments (H). All data are from different biological replicates.
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GABA Promotes BAT Dysfunction
To further investigate the role of GABA signaling in BAT, we

added GABA to the drinking water of mice with dietary obesity.

The oral intake of GABA reportedly does not increase GABA

levels in the brain because GABA is unable to cross the blood

brain barrier, especially in rodents (Boonstra et al., 2015), which

our findings confirmed (Figure S2A), but it did markedly increase

GABA in the interscapular BAT of obese mice (Figures 2A and

S2B). The oral administration of GABA did not lead to increased

food intake, body weight, or interscapular BAT weight (Figures

2B and S2C), but it promoted the whitening of interscapular

BAT in mice with dietary obesity (Figures 2C and S2D). Electron

microscopy showed that GABA administration led to mitochon-

drial fragmentation and rarefaction in interscapular BAT (Fig-

ure 2D) and also increased the levels of reactive oxygen species

(ROS) (Figures 2E, S2E, and S2F). GABA administration also

decreased mitochondrial brown fat UCP-1 levels in the inter-

scapular BAT of obese mice at both protein and transcriptional

levels (Figures 2F and S2G). There was also a reduced thermo-

genic response to metabolic stress and worsening of systemic

glucose intolerance in obese mice administered GABA (Figures

2G and 2H). In vitro, the addition of GABA to cultures of differ-

entiated brown adipocytes led to a significant reduction in tran-

scripts that are associated with functional BAT, including Ucp1,

Mtnd5, Ppargc1a, and Ndufa1 (Figure S2H). Taken together,

these in vivo and in vitro findings indicated that excessive

GABA signaling promotes BAT dysfunction and systemic

glucose intolerance in obese mice.

Suppression of GABA-BR1 Ameliorates BAT
Dysfunction
Next, we analyzed a heterozygous knockout GABA-BR1

(Gabbr1 KO) model generated in BALB/c mice (Schuler et al.,

2001). Homozygous Gabbr1-null mice are reported to have epi-

lepsy (Schuler et al., 2001); we therefore used heterozygous

Gabbr1 mice in our study. Gabbr1 KO mice fed a HFD had a

similar body weight and BAT weight to their WT littermates at

18 weeks of age (Figures S3A and S3B); by 55 weeks of age,

the body weights of Gabbr1 KO and WT mice still did not signif-

icantly differ (data not shown). The whitening of BAT associated

with obesity was also ameliorated inGabbr1KOmice (Figure 3A),

and electron microscopy indicated that mitochondrial fragmen-
Figure 2. GABA Promotes Dysfunction of Brown Adipose Tissue and S

Wild-type mice were fed NC or a HFD. In the HFD group, mice were fed the diet fr

groups, GABA was mixed into the drinking water from 4 weeks of age (GABA).

(A) Immunofluorescent staining for GABA (red) in BAT of the indicated groups. T

(B) Body weight (n = 7, 9, 9, and 11) and BAT weight adjusted by body weight (n

(C–E) Findings on H&E staining (C; scale bars = 100 mm), transmission electron m

(E) of BAT (scale bars = 100 mm).

(F) Western blot analysis of UCP-1 in BAT from wild-type mice fed a HFD with o

relative to the tubulin loading control (n = 8 and 8).

(G) Results of the acute cold tolerance test (n = 8, 6, 16, and 17).

(H) Results of glucose tolerance test (n = 9, 8, 14, and 14).

Data were analyzed by the two-tailed Student’s t test (F) with non-parametric K

multiple comparison test (B; right panel [BAT/BW ratio]; G and H). *p < 0.05; **p <
##p < 0.01 NC versus HFDGABA (G and H). Values represent the mean ± SEM. Da

independent series of experiments (B and F), one independent series of experime

from different biological replicates.
tation and rarefaction in brown adipocytes from interscapular

BAT were both reduced (Figure 3B). Moreover, in Gabbr1 KO

mice, the levels of ROS in BAT were significantly reduced (Fig-

ures 3C and S3C), systemic glucose intolerance in the presence

of metabolic stress was ameliorated (Figure 3D), and Ucp1

expression in interscapular BAT was increased (Figure 3E).

To investigate a potential role for the sympathetic nervous sys-

tem in this genetic model, we measured norepinephrine levels

in interscapular BAT and found them to be similar in WT and

Gabbr1 KO mice (Figure S3D). To obtain more direct evidence

of the beneficial effect of suppressing GABA/GABA-BR1

signaling for maintaining BAT function, we infused SCH-50911,

a selective GABA-B receptor antagonist (GABA-BR blocker),

around the interscapular BAT of WTmice for 2 weeks via an infu-

sion pump. The administration of this GABA-BR blocker did not

alter either the body weight or interscapular BAT weight of WT

mice (Figures S3E and S3F). However, it contributed to the re-

browning of BAT under metabolic stress (Figures 3F and S3G),

reduced mitochondrial fragmentation and rarefaction in brown

adipocytes (Figure 3G), and reduced the tissue ROS levels in

BAT, relative to untreated controls (Figures 3H and S3H). The

GABA-BR blocker also improved systemic glucose intolerance

(Figure 3I) and the thermogenic response to the acute cold toler-

ance test (Figure S3I) in mice with dietary obesity. Furthermore,

Ucp1 levels in interscapular BAT were increased by administra-

tion of this compound (Figure 3J). Moreover, in vitro, the addition

of SCH-50911 to cultures of differentiated brown adipocytes

suppressed the GABA-induced mitochondrial production of

ROS (Figure S3J) and prevented reduction of the mitochondrial

membrane potential (Figure S3K).

To investigate the potential effects of the GABA-BR blocker on

systemic metabolism and to further test our hypothesis that

GABA-BR1 suppression contributes to the re-browning of whit-

ened BAT under metabolic stress, we injected adeno-associated

virus that encodes short hairpin RNA for Gabbr1 (adeno-associ-

ated virus [AAV]-U6-GFP sh-Gabbr1 [AAV sh-Gabbr1]) directly

into the interscapular BAT of WT mice under direct visual guid-

ance. Using the IVIS imaging system, we confirmed that AAV

sh-Gabbr1 was successfully delivered into the interscapular

BAT and confirmed with qPCR analysis that Gabbr1 transcripts

were significantly reduced following this procedure (Figures S4A

and S4B). We also analyzed Gabbr1 levels in the liver, gonadal
ystemic Metabolic Derangement

om 4 weeks of age and analyzed at 13–20 weeks of age. In some NC and HFD

he scale bars represent 100 mm.

= 7, 9, 9, and 11) were measured.

icroscopy (D; scale bars = 2 mm), and 4-hydroxy-2-nonenal (4-HNE) staining

r without GABA administration. Right panel displays quantification of UCP-1

ruskal-Wallis test (B; left panel [BW]) or two-way ANOVA followed by Tukey’s

0.01 (B and F). **p < 0.01 NC versus HFD; $$p < 0.01 HFD versus HFD GABA;

ta are from one of two independent series of experiments (A, C, and E) from two

nt (D), or from three independent series of experiments (G and H). All data are
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Figure 3. Inhibition of GABA-BR1-Mediated Signaling Suppresses Whitening of BAT and Improves Systemic Metabolic Health

Characterization of GABA-BR1 heterozygous knockout (Gabbr1 KO) mice (18 weeks old) and mice with selective GABA-B receptor inhibition in BAT. Mice were

fed the HFD from 4 weeks of age for a total of 14 weeks (Gabbr1 KO mice) or 12 weeks (GABA-BR blocker mice). The mice were analyzed by H&E staining of

interscapular BAT (A and F; scale bars = 100 mm), transmission electron microscope study of BAT (B and G; scale bars = 2 mm), and 4-HNE staining of BAT

(C and H; scale bars = 100 mm). Results of the glucose tolerance test (D [n = 6 and 9] and I [n = 4 and 4]). Results of qPCR for Ucp1 in interscapular BAT (E [n = 5

and 5] and J [n = 8 and 5]). Right panels in (A) (n = 3 and 3) and (F) (n = 4 and 4) show quantitative data for the number of large lipid droplets (defined as >250 mm2)

per field. Data were analyzed by the two-tailed Student’s t test (A, E, F, and J) or two-way ANOVA, followed by Tukey’s multiple comparison test (D and I).

*p < 0.05; **p < 0.01. Values represent the mean ± SEM. Data are from one of two independent series of experiments (A and C), from one independent series of

experiment (B and F–J), or from two independent series of experiments (D and E). All data are from different biological replicates.
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Figure 4. GABA/GABA-BR1-Mediated Signaling Induces Mitochondrial Calcium Overload and Dysfunction

(A–C) Relative staining of mitochondrial calcium (Rhod-2; A), mitochondrial reactive oxygen species (MitoSox; B), functional mitochondria (MitoRed; C), and total

mitochondria (Mito Tracker Green FM [MitoGreen]) in differentiated brown adipocytes incubated with PBS or GABA (250 nM; 20 min for Rhod-2 and 250 nM; 6 hr

for MitoRed or MitoGreen) with or without a calcium uniporter protein, mitochondrial inhibitor (MCU inhibitor: 250 nM; 20 min for Rhod-2 and 250 nM; 6 hr for

(legend continued on next page)
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white adipose tissue (WAT), and skeletal muscle (quadriceps

muscle) and found Gabbr1 transcript levels remain unchanged

in these organs following the injection of AAV sh-Gabbr1 into the

BAT (data not shown). Body weight and the BAT/body weight

(BW) ratio were comparable between the AAV sh-Gabbr1-treated

group and control groups (Figure S4C); however, BAT whitening

was markedly improved by this treatment (Figure S4D). Electron

microscopy showed that mitochondrial fragmentation and rare-

faction in the brown adipocytes of interscapular BAT were also

reduced in the AAV sh-Gabbr1-treated group compared to the

control group (Figure S4E). ROS levels were also significantly

reduced in the interscapular BAT of the AAV sh-Gabbr1-treated

group (Figure S4F), and systemic glucose intolerance was

improved in this group under dietary obese conditions (Fig-

ure S4G). These results indicate that a reduction in Gabbr1 in

BAT promotes the re-browning of BAT under conditions of meta-

bolic stress, thereby contributing to systemic metabolic health.

GABA/GABA-BR1-Mediated Signaling Promotes Brown
Adipocyte Dysfunction
We subsequently investigated the mechanisms that mediate

brown adipocyte dysfunction downstream of GABA/GABA-

BR1 signaling. The GABA-B receptor couples to G proteins,

and its downstream signaling reportedly increases intracellular

Ca2+ (Bazargani and Attwell, 2016; New et al., 2006). An increase

of cytosolic Ca2+ promotes mitochondrial Ca2+ influx through

calcium uniporter protein, mitochondrial (MCU) (Shanmughap-

riya et al., 2015; Wiel et al., 2014). In the mitochondria, calcium

regulates enzymes of the citric acid cycle and helps to maintain

mitochondrial homeostasis, and calcium overload increases

mitochondrial ROS production and dysfunction (Arruda et al.,

2014; Brookes et al., 2004; Görlach et al., 2015; Pinton et al.,

2008). These findings led us to test whether GABA-BR1-medi-

ated signaling causes an increase in the mitochondrial levels of

Ca2+ and ROS. As expected, the addition of GABA to cultures

of differentiated brown adipocytes increased both mitochondrial

calcium and ROS (left panel in Figures 4A and 4B) and also

reduced the mitochondrial membrane potential (left panel in Fig-

ure 4C); all of these changes were ameliorated by the administra-

tion of an MCU inhibitor (right panel in Figures 4A–4C). The

results of Seahorse XF extracellular flux analysis for oxygen

consumption rate indicated that GABA reduced mitochondrial

respiration in differentiated brown adipocytes (Figure S4H).

Similar to the effects of GABA, the addition of a selective calcium

ionophore (ionomycin) to differentiated brown adipocyte cul-

tures increased mitochondrial calcium and ROS levels and
MitoRed or MitoGreen). The scale bars represent 50 mm. Right panels in Figures

and 4; B: n = 5, 5, 5, and 5; C: n = 4, 4, 4, and 4; MCU-i, MCU inhibitor).

(D) Western blot analysis of GABA-BR1 in the cell membranes of brown adipoc

hypoxia). Right panel displays quantification of GABA-BR1 relative to the ATPas

(E) Scheme showing a summary of the findings in this study. Under metabolic stre

indicate that hypoxia promotes transition of GABA-BR1 to the cell membrane. G

via calcium uniporter protein, mitochondrial (MCU), leading to calcium overload

mitochondrial dysfunction and systemic metabolic derangement.

Data were analyzed by the two-tailed Student’s t test (D) with the non-parametr

comparison test (B and C). *p < 0.05; **p < 0.01. Values represent the mean ± SE

independent series of experiments (D). All data are from different biological repli
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reduced the mitochondrial membrane potential (Figures

S4I–S4K). These findings suggest that the activation of GABA/

GABA-BR1 signaling induces mitochondrial dysfunction in

brown adipocytes by promoting excessive Ca2+ influx.

Finally, we studied the mechanisms by which metabolic stress

contributes to the activation of GABA/GABA-BR1 signaling,

focusing on the increase of GABA-BR1 immunoreactivity in the

cell membranes of brown adipocytes in the BAT of obese mice.

Obesity is reported to induce hypoxia in BAT by suppressing the

production of vascular endothelial growth factor (Shimizu et al.,

2014). Our in vitro studies showed that hypoxia promotes the

translocation of GABA-BR1 to the cell membrane in brown adipo-

cytes (Figure 4D), indicating that hypoxic stress might contribute

to the activation of GABA-BR1-mediated signaling. In the CNS,

GABA is reported to act after its uptake via the GABA transporter

(Conti et al., 2004). To exclude the potential contribution of

a GABA-GABA transporter pathway in brown adipocytes, we

performed metabolic flux analysis with CE-MS. For this assay,

primary brown adipocytes were prepared from the BAT of 2- to

3-day-old Wistar rats. The addition of stable isotope-labeled

GABA (4-aminobutynic acid-2,2,3,3,4,4-d6 acid) to differentiated

brown adipocytes showed that exogenous GABA did not pass

through the cell membrane (Figure S4L), indicating that the path-

ways mediated by GABA-BR1, but not by the GABA transporter,

are involved in the disturbance of brown adipocyte homeostasis.

DISCUSSION

The findings of our study suggest that the constitutive activation

of GABA/GABA-BR1 signaling mediates BAT dysfunction and

systemic metabolic derangement in conditions of obesity. Our

findings show that GABA/GABA-BR1-mediated signaling trig-

gered excessive calcium influx into the mitochondria of brown

adipocytes in mice, via MCU, leading to mitochondrial calcium

overload and to increased ROS production. Our findings also

show that, in healthy volunteers, GABA-BR1 transcripts are

significantly increased in individuals with low UCP1 expression

compared to those with high UCP1 expression. Obesity is asso-

ciated with the functional decline of BAT, and metabolic stress

is reported to reduce Ucp1 expression (Cypess et al., 2009;

Shimizu et al., 2014). Our findings thus implicate GABA-BR1-

mediated signaling in inducing BAT dysfunction in obese mice

and demonstrate that GABA-BR1 expression levels inversely

correlate with UCP1 expression in humans.

In this study, we could not completely characterize the mech-

anisms that lead to increased GABA in the BAT of our obese
4A–4C show quantification of signals in the indicated groups (A: n = 4, 4, 4,

ytes under normoxic conditions (Con) or hypoxic conditions (1% O2 for 1 hr;

e loading control (n = 3 and 3).

ss, BAT is reported to develop hypoxia (Shimizu et al., 2014), and our findings

ABA/GABA-BR1-mediated signaling induces calcium influx into mitochondria

and increased production of reactive oxygen species (ROS). This results in

ic Kruskal-Wallis test (A) or by two-way ANOVA followed by Tukey’s multiple

M. Data are from three independent series of experiment (A–C) or one of two

cates.



mouse model. Our metabolomic analyses have suggested that

circulating GABA levels would not be increased in our murine

model of dietary obesity. Our findings show that the sympathetic

denervation of BAT significantly reduced norepinephrine to an

undetectable level but led to only a slight and non-significant

reduction of GABA in the BAT of both the normal chow and

HFD-fed groups. This suggests that the sympathetic nervous

system might play only a minor role in regulating GABA levels

in BAT during metabolic stress, as well as under physiological

conditions. We also investigated whether brown adipocytes

could generate GABA from glutamate by the GABA shunt. Our

findings show this not to be the case: GAD1 and GAD2 proteins

were not detected in the BAT of obese WT mice and Gad1 and

Gad2 transcripts were not detected in either the BAT of obese

WT mice or in differentiated brown adipocytes in vitro. However,

low Gad1 expression levels in CD45+ cells indicate that immune

cells might make a minor contribution to GABA production in

BAT under metabolic stress.

In differentiated brown adipocytes, our findings show that

exogenous GABA did not cross the cell membrane (Figure S4L),

but this does not necessarily exclude the existence of other

GABA transporters involved in the excretion of intracellular

GABA frombrown adipocytes. GABAmight have been increased

in the BAT of the HFD group simply because membranous

GABA-BR1 is upregulated by obesity, as shown in our study,

but the existence of unknown metabolic pathways contributing

to intracellular GABA production cannot be excluded and further

studies are needed to explore the underlying mechanisms

involved. In addition to its post-transcriptional regulation, we

found that GABA-BR1 was transcriptionally upregulated in the

chronic phase of dietary obesity. The levels of Gabbr1 in the

BAT of normal-chow-fed and HFD-fed mice after 10 weeks

were comparable (data not shown), butGabbr1was significantly

increased in the HFD-fed mice after 20 weeks. In addition to the

translocation of GABA-BR1 to the cell membrane in brown

adipocytes, this result suggests that transcriptional activation

contributes to the augmentation of GABA/GABA-BR1 signaling

in the chronic phase of obesity.

Our findingsalsoshowthat thesuppressionofexcessiveGABA/

GABA-BR1 signaling and the inhibition of mitochondrial calcium

overload inBAT is crucial for themaintenance of normal BAT func-

tion and contributes to healthy systemic metabolism (Figure 4E).

Together, these findings advance our understanding of the patho-

logical role that peripheral GABA signaling plays in BAT.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GABA antibody Sigma Aldrich A2052; RRID: AB_477652

GABA-BR1 antibody Santa Cruz sc-7338; RRID: AB_640742

Anti-GABA-BR1 antibody Abcam ab166604; RRID: N/A

Anti-actin antibody Cell Signaling #4967; RRID: AB_330288

Anti-UCP1 Abcam ab10983; RRID: AB_2241462

Anti-a-tubulin Cell Signaling #2125; RRID: AB_2619646

Anti-sodium potassium ATPase antibody Abcam ab76020; RRID: AB_1310695

Anti-4 hydroxynoneal antibody Abcam ab46545; RRID: AB_722390

Hoechst Life Technologies 33258; RRID: AB_2651133

Goat anti-rabbit IgG H&L (Cy5) Abcam ab97077; RRID: AB_10679461

Goat anti-rabbit IgG H&L (DyLight488) Abcam ab96899; RRID: AB_10679361

Donkey anti-goat IgG H&L (Cy5) Abcam ab6566; RRID: AB_955056

Horseradish peroxidase-conjugated anti-rabbit immunoglobulin G Jackson Immunoresearch #113-035-003; RRID: AB_2313567

Anti-GAD65+GAD67 antibody Abcam ab183999; RRID: N/A

Rat anti-mouse CD45 BD Biosciences 550539; RRID: AB_2174426

Dynabeads sheep anti-rat IgG Invitrogen 11035; RRID: N/A

Bacterial and Virus Strains

AAV-DJ Helper Free shRNA Expression System Cell Biolabs Inc VPK-413-DJ

Biological Samples

BAT cDNA samples from Human Dr. Camilla Scheele Rigshospitalet, Copenhagen, Denmark

Chemicals, Peptides, and Recombinant Proteins

GABA-B receptor antagonist, SCH-50911 TOCRIS Bioscience 0984

GABA Sigma Aldrich A5835

Ionomycin WAKO 095-05831

MCU inhibitor, KB-R7943 TOCRIS Bioscience 1244

Wheat germ agglutinin, Alexa Fluor 488 conjugate Thermo Fisher Scientific W11261

Dihydroethidium (DHE) WAKO 041-28251

MitoSox Thermo Fisher Scientific M36008

MitoTracker Green FM Thermo Fisher Scientific M7514

MitoTracker Red CM-H2Xros Thermo Fisher Scientific M7513

Rhod-2 AM Thermo Fisher Scientific R1245MP

Critical Commercial Assays

Plasma membrane protein extraction kit Abcam ab65400

QuickTiter AAV Quantitation Kit Cell Biolabs Inc VPK-145

ViraBind AAV Purification Kit Cell Biolabs Inc VPK-140

X-tremeGENE9 DNA Transfection Reagent Roche 06365809001

Experimental Models: Cell Lines

Brown pre-adipocytes Dr. C. Ronald Kahn (Klein et al., 1999)

Oligonucleotides

Sequence of sh-Gabbr1 In this paper N/A

50-GATCCGCGGTTTCCAACGTTCTTTCGAAGAGACGAAAGAAC

GTTGGAAACCGCTTTTTTG-30

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Sequence of sh-Gabbr1 complement In this paper N/A

50-AATTCAAAAAAGCGGTTTCCAACGTTCTTTCGTCTCTTCGAA

AGAACGTTGGAAACCGCG-30
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tohru

Minamino (tminamino@med.niigata-u.ac.jp, t_minamino@yahoo.co.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples
Supraclavicular adipose tissue samples from a previous study were used (Jespersen et al., 2013). Briefly, prior to elective surgery,

patients with suspected head and neck cancer were enrolled via the outpatient clinic of the Department of Oto-Rhino-Laryngology

Head & Neck Surgery at Rigshospitalet (Copenhagen, Denmark). All subjects provided written informed consent prior to participa-

tion. The Scientific-Ethics Committees of the Capital Region and of Copenhagen and Frederiksberg Municipalities, Denmark

approved the study protocols (journal number H-A-2009-020 and H-17014258 respectively), and the studies were performed in

accordancewith the Declaration of Helsinki. Biopsies were obtained during surgery by an experienced surgeon. Tissuewas removed

using a scalpel and scissors. Immediately after removal, the tissue samples were flash frozen in liquid nitrogen before being stored

at –80�C until analysis. Due to variation of UCP1 expression, supraclavicular samples were divided into high BAT (Mean BMI = 24,

Median BMI = 24, ranging fromBMI 20-28) and lowBAT groups (Mean BMI = 25,Median BMI = 26, ranging fromBMI 18-31) based on

UCP1 expression (n = 10 (female (n = 6) and male (n = 4)) and n = 9 (female (n = 3), male (n = 6)) respectively), as described previously

(Jespersen et al., 2013). qPCR studies were performed using the ViiA 7 Real-Time PCR System (Thermo Fisher Scientific). PPIA gene

expression was determined by using Power Up SYBR Green Master Mixgreen with standard settings. GABA-BR1 gene expression

was assessed with TaqMan Universal PCR Master Mix. Results were normalized for PPIA and calculated by the standard curve

method. Assays were conducted using UCP1 (Hs00222453_m1) or GABBR1: (Hs00961677_m1).

The other primers and their sequences were as follows.

GABBR1; 50-Cccgacttccatctggtg-30, 50-gtggcgttcgattcacct-30

PPIA; 50-acgccaccgccgaggaaaac-30, 50- tgcaaacagctcaaaggagacgc-30

Animal models
All of the animal experimentswere conducted in compliancewith the protocol reviewedby the Institutional Animal Care andUseCom-

mittee of Niigata University and approved by the President of Niigata University. C57BL/6NCr male mice were purchased from SLC

Japan (Shizuoka, Japan). Thesemiceweremaintainedonahigh fat diet (HFD)(HFD32,CLEAJapan) for 9–16weeks, startingat 4weeks

of age, unless otherwise described in the figure legends. In some normal chow (NC) and HFD groups, gamma-aminobutyric acid

(GABA) (Sigma Aldrich, A5835) was added to the drinking water at 2 mg/ml from 4 weeks of age. In some HFD groups, a selective

GABA-B receptor antagonist (SCH-50911; TOCRIS Bioscience, 0984; total dose: 450 mg/mouse) was administered around the inter-

scapular BAT via an infusion pumpwith vinyl catheter tubing (Durect Corp.) for 2weeks from 14weeks of age, and themicewere sub-

jected to analysis at 16 weeks. GABA-BR1 heterozygous knockout (Gabbr1KO) malemice were generated on a BALB/c background

and were provided by Eiichi Hinoi (Kanazawa University, Ishikawa, Japan). Genotyping of these mice was conducted as described

previously (Fukui et al., 2008). Heterozygous male mice were fed a high fat diet for at least 10 weeks from 4 weeks of age before un-

dergoing investigation. Unilateral surgical denervation of interscapular BATwasperformedasdescribedpreviously (Tang et al., 2015).

METHOD DETAILS

Systemic metabolic parameters
Mice were housed individually for one week prior to the assay. On the day of the glucose tolerance test, the mice were fasted for 6 hr

and then glucose was injected intraperitoneally at a dose of 2g/kg in the early afternoon. Blood glucose levels were measured with a

glucose analyzer (SANWA KAGAKU KENKYUSHO) at 15, 30, 60, and 120 min after glucose injection.

Acute cold exposure
Body temperature was assessed by subcutaneous implantation of biocompatible and sterile microchip transponders (IPTT-300

Extended Accuracy Calibration; Bio Medic Data Systems) in the scapular region according to the manufacturer’s instructions.

Animals were subjected to the cold tolerance test (CTT) at 4�C and body temperature was measured at hourly intervals for 6–8 hr.
Cell Reports 24, 2827–2837.e1–e5, September 11, 2018 e2

mailto:tminamino@med.niigata-u.ac.jp
mailto:t_minamino@yahoo.co.jp


Metabolomic analyses
Metabolomic analyses were done by Soga et al. using capillary electrophoresis-mass spectrometry (CE-MS), as described previ-

ously (Hirayama et al., 2009). Interscapular BAT samples fromC57BL/6NCrmalemice were corrected and subjected tometabolomic

studies to analyze the level of neurotransmitters. Flux analysis was performed in vitro with deuterated GABA (4-aminobutynic acid-

2,2,3,3,4,4-d6 acid, Taiyo Nippon Sanso, 61558-7). For this assay, primary brown adipocytes were prepared from the BAT of 2- to

3-day-old Wistar rats. In brief, interscapular BAT was removed and washed in ice-cold PBS, after which it was minced finely and

washed again with cold PBS. Isolation of cells was performed at 37�C by using collagenase (final concentration 12.5mg/ml),

0.9% NaCl (final concentration 0.123M), KCl (final concentration 5mM), CaCl2 (final concentration 1.3 mM), glucose (final concentra-

tion 5mM), HEPES (final concentration 100 mM), and bovine serum albumin (final concentration 4%). After each digestion, the cell

suspension was immediately placed in high glucose DMEMwith 10%FBS and 100U/ml Penicillin/Streptomycin (P/S). After all diges-

tions, the cell suspension was centrifuged for 5 minutes at 1,500 rpm in high glucose DMEM. Then the pellet was re-suspended in

culture medium (high glucose DMEMwith 10%FBS and 100 U/ml P/S). For use in further studies, cells weremaintained at 37 �Cwith

a 5% CO2 atmosphere and differentiation was induced as previously described (Fasshauer et al., 2001). Fully differentiated brown

adipocytes were used for analysis after 10 days of differentiation culture. After 12 nM 4-aminobutynic acid-2,2,3,3,4,4,d6 acid was

added to the culture medium, cells were harvested at the indicated time points. Cells were washed three times with ice cold

5% Mannitol and then let stand for 10 min at room temperature in methanol containing L-methionine sulfone (25 mM, Wako

502-76641), MES (25 mM, Dojindo 349-01623), and CSA (25 mM, Wako 037-01032). The cells were harvested with a cell scraper

and 400 mL of supernatant was collected after vortexing for 30 s. After adding CHCl3 (400 ml) and distilled water (200 ml) with thorough

mixing, centrifugation was performed at 10,000 g for 3 min at 4�C. Then the aqueous layer (400 ml) was transferred to an ultrafiltration

tube (UltrafreeMC-PLHCC, Human Metabolome Technologies, UFC3LCCNB-HMT). This was followed by centrifugation at 9,100 g

for 2hr at 20�C. Then 320 mL of filtrate was shipped to the Institute for Advanced Biosciences at Keio University for further analyses. In

one study (Figure S3D), the norepinephrine level wasmeasured in BATwith an ELISA kit (Abnova, Norepinephrine ELISA kit, KA1891).

Histological and physiological analyses
Interscapular BATsampleswere harvested frommice, fixedovernight in 10% formalin, embedded inparaffin, and sectioned for immu-

nofluorescence or hematoxylin-eosin (HE) staining. Lipid droplets and fluorescence signalswere quantifiedwith Image-J software at a

magnification of x400, with four fields being randomly selected in each section. Large lipid droplets were defined as > 250 mm2 in size.

The following antibodies were used: anti-GABA antibody (Sigma Aldrich A2052), GABA-BR1 antibody (Santa Cruz Biotechnology sc-

7338), anti-4 hydroxynoneal antibody (Abcam, ab46545), wheat germ agglutinin, Alexa Fluor 488 conjugate for staining cell mem-

branes (Thermo Fisher Scientific, W11261), and Hoechst (Life Technologies, 33258). The secondary antibody for anti-GABA antibody

was goat anti-rabbit IgG H&L (Cy5) (Abcam, ab97077) or goat anti-rabbit IgG H&L (DyLight488) (Abcam, ab96899). The secondary

antibody for GABA-BR1 antibodywas donkey anti-goat IgGH&L (Cy5) (Abcam, ab6566), while that for anti-4 hydroxynoneal antibody

was goat anti-rabbit IgGH&L (Cy5) (Abcam, ab97077). In some studies, reactive oxygen species (ROS) was evaluated with Dihydroe-

thidium (DHE) staining (WAKO, 041-28251). All primary and secondary antibodies were used at a dilution of 1:50, except for Hoechst

(1:1000). Stained sections were photographed with a Biorevo (Keyence Co.). For electronmicroscopy, interscapular BATwas fixed in

2.5% glutaraldehyde/2.0% paraformaldehyde in 0.1M cacodylate buffer. Then 50 mg of calcium chloride was added to 400 mL of

fixative.Grids for electronmicroscopywerepreparedbyMasaakiNametaat theelectronmicroscopecore facility ofNiigataUniversity,

and electron microscopy was performed by using a JEM1400 TEM at Niigata University Medical Campus.

RNA analysis
Total RNA (1 mg) was isolated from tissue samples with RNA-Bee (TEL-TEST Inc.). Real-time PCR (qPCR) was performed by using a

Light Cycler 480 (Roche) with the Universal Probe Library and the Light Cycler 480 Probes Master (Roche) according to the manu-

facturer’s instructions. The primers and their sequences were as follows. Actb, Rps1, or Rplp0 was used as the internal control.

Actb; 50-CTAAGGCCAACCGTGAAAAG-30, 50-ACCAGAGGCATACAGGGACA-30

Rps18;50-GCTCTAGAATTACCACAGTTATCCAA-30, 50-AAATCAGTTATGGTTCCTTTGGTC-30

Gabbr1; 50-CAACGTCACCTCGGAAGG-30, 50-CGGCACACATATTCAATCTCA-30

Ucp1; 50-GGCCTCTACGACTCAGTCCA-30, 50-TAAGCCGGCTGAGATCTTGT-30

Mtnd5; 50-GGAAGCATCTTTGCAGGATT-30, 50-TGGTATTGTGAGGATTGGAATG-30

Ndufa1; 50-TGATGGAACGCGATAGACG-30, 50-GCCAGGAAAATGCTTCCTTA-30

Ppargc1a; 50-GAAAGGGCCAAACAGAGAGA-30, 50-GTAAATCACACGGCGCTCTT-30

Rplp0 50- gatgcccagggaagacag �30, 50- acaatgaagcattttggataa �30

Western blot analysis
Whole-cell lysates were prepared in lysis buffer (10 mM Tris-HCl, pH 8, 140 mM NaCl, 5 mM EDTA, 0.025% NaN3, 1% Triton X-100,

1% deoxycholate, 0.1% SDS, 1 mM PMSF, 5 mg ml–1 leupeptin, 2 mg ml–1 aprotinin, 50 mM NaF, and 1 mM Na2VO3). Then the

lysates (40–50 mg) were resolved by SDS-PAGE. Proteins were transferred to a PVDF membrane (Millipore) that was incubated

with the primary antibody, followed by incubation with horseradish peroxidase-conjugated anti-rabbit immunoglobulin G (Jackson
e3 Cell Reports 24, 2827–2837.e1–e5, September 11, 2018



Immunoresearch, #113-035-003). Proteins were detected by enhanced chemiluminescence (GE). For western blotting of the plasma

membrane fraction, we used a plasma membrane protein extraction kit (Abcam, ab65400). The primary antibodies for western blot-

ting were anti-GABA-BR1 antibody (Abcam, ab166604), anti-actin antibody (Cell Signaling, #4967), anti-UCP1 (Abcam, ab10983),

anti-a-tubulin (Cell Signaling, #2125), and anti-sodium potassium ATPase antibody (Abcam, ab76020). The primary antibodies

were used at a dilution of 1:5000 for anti-GABA-BR1 antibody, 1:1000 for anti-a-tubulin, 1:2000 for anti-UCP1, and anti-actin anti-

body or 1:15000 for anti-sodium potassium ATPase antibody.

Analysis of GAD expression
Whole cell lysates were extracted from the BAT of mice fed NC or an HFD and subjected to western blot analysis as described above.

The primary antibodies were anti-GAD65+GAD67 antibody (Abcam, ab183999) and anti-b-actin antibody (Cell Signaling, #4970) at a

1:1000 dilution. Total RNA was isolated from the BAT of mice fed NC or an HFD, as well as from mouse brain tissue and a brown

adipocyte cell line, by using RNA-Bee (TEL-TEST Inc.). Magnetic-activated cell sorting was performed to harvest CD45+ cells

from the BAT of mice fed an HFD by using rat anti-mouse CD45 (20:1 dilution, BD Biosciences, 550539) pre-conjugated with

Dynabeads sheep anti-rat IgG (200 ml, Invitrogen, 11035) and incubation overnight at 4�C, as reported previously (Yoshida et al.,

2015). Then total RNA was isolated from the collected CD45+ cells and subjected to qPCR as described above with the following

primers:

Gad1 (50-ATACAACCTTTGGCTGCATGT �30, 50-TTCCGGGACATGAGCAGT �30) and
Gad2 (50-TGTAGCTGACATCTGCAAAAAGTA-30, 50-GGGACATCAGTAACCCTCCA-30).

Brown adipocyte cell line and molecular probe studies
The brown pre-adipocyte cell line was a kind gift from Dr. C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School,

Section on Integrative Physiology and Metabolism, Boston, USA)(Klein et al., 1999). The cell line was established from wild-type

FVB mice, and was immortalized by infection with the retroviral vector pBabe encoding SV40T antigen. Cells were cultured in

high glucose DMEM with 10% FBS and 100 U/ml P/S, and differentiation was induced as described previously (Fasshauer et al.,

2001). Fully differentiated brown adipocytes were used for further analysis after 10 days of culture. The brown adipocytes were

stained with mitochondrial molecular probes and analyzed under an FV1200 confocal microscope (Olympus). MitoSox (1 mM,

10 min, Thermo Fisher Scientific, M36008), MitoTracker Green FM (200 nM, 45 min, Thermo Fisher Scientific, M7514), MitoTracker

Red CM-H2Xros (200 nM, 45 min, Thermo Fisher Scientific, M7513), and Rhod-2 AM (5 mM, 30 min, Thermo Fisher Scientific,

R1245MP) were used according to the instructions of the manufacturers. In some studies, differentiated brown adipocytes were

cultured with GABA (250 nM for 6 hours; Sigma Aldrich, A5835), a GABA-B receptor antagonist (SCH 50911) (10 mM, added

30 min before addition of GABA; TOCRIS Bioscience, 0984), ionomycin (10 mM for 30 min (diluted with methanol); WAKO

095-05831), or an MCU inhibitor (KB-R7943) (250 nM, added simultaneously with GABA; TOCRIS Bioscience, 1244). Hypoxic stress

was induced by culturing cells under hypoxic conditions (1%O2 for 1 hr) in a hypoxia chamber (StemCell Technologies) according to

the manufacturer’s instructions.

Extracellular Flux Assay
The cellular oxygen consumption rate and extracellular acidification rate were measured with a Seahorse XF extracellular flux

analyzer according to the manufacturer’s instructions (Agilent Technologies). Brown pre-adipocytes were seeded in a Seahorse

XF 24-well assay plate in high glucose DMEMwith 10% FBS and 100 U/ml P/S at a density of 2,000 cells per well, and differentiation

was initiated after 12 hr. After 4 days of differentiation culture, the differentiated adipocytes were incubated with PBS or GABA

(250 nM for 6 hr). Then the plate was washed and the medium was replaced with pre-warmed running medium (XF base medium

supplemented with 25 mMD-glucose, 1 mM pyruvate, and 2 mM glutamine for the mitochondrial stress test), followed by incubation

in a non-CO2 incubator at 37
�C for 60min. After the basal oxygen consumption rate and extracellular acidification rate were recorded

for 24 min, the mitochondrial stress test was performed (1 mM oligomycin, 2 mM FCCP, and 0.5 mM rotenone/ antimycin A). All

reagents were from the Seahorse XF Cell Mito Stress Test Kit (Seahorse Bioscience, #103015-100). After these analyses, the number

of cells in each well was counted and results were adjusted per 1x105 cells.

Adeno associated virus (AAV) and IVIS imaging system
pAAV-sh-Gabbr1 and pAAV-sh-Negative control vectors were constructed using standard subcloning techniques according to the

manufacturer’s instructions (AAV-DJ Helper Free shRNA Expression System, Cell Biolabs Inc, VPK-413-DJ). Annealed complemen-

tary nucleotides for shRNA target site against mouse Gabbr1 or negative control were subcloned into BamHI/EcoRI sites of pAAV-

U6-GFP expression vector. We co-transfected HEK293 cells with pAAV expression vector, pAAV-DJ and pHelper using transfection

reagent (X-tremeGENE9 DNA Transfection Reagent, Roche, 06365809001). AAV was harvested from these cells by freeze and thaw

cycles, and purified with a ViraBind AAV Purification Kit (Cell Biolabs Inc, VPK-140). Titer of purified AAV was quantified with

QuickTiter AAV Quantitation Kit (Cell Biolabs Inc, VPK-145). We injected AAV into BAT under direct visual guidance as described

previously (Shimizu et al., 2014). The titer of AAV was 1x10̂ 9 GC/mice. AAV injection was performed in mice (17-19 weeks age)

fed HFD for more than 12 weeks since 5 weeks of age. Physiological studies were performed at postoperative days 10 to 18, and
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tissues were collected for further analyses at postoperative days 21 to 22. In some studies, collected BAT was analyzed with IVIS in

ex-vivo setting (IVIS lumina III, Summit Pharmaceuticals international corporation), and GFP signal was detected. Sequence of

shRNA were as follows.

sh-Gabbr1

50-GATCCGCGGTTTCCAACGTTCTTTCGAAGAGACGAAAGAACGTTGGAAACCGCTTTTTTG-30

50-AATTCAAAAAAGCGGTTTCCAACGTTCTTTCGTCTCTTCGAAAGAACGTTGGAAACCGCG-30

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were done with SPSS version 24 software. Data are shown as the mean ± SEM. Differences between groups

were examined by the two-tailed Student’s t test or two-way ANOVA, followed by Tukey’s multiple comparison test, the non-para-

metric Kruskal Wallis test, or Dunnett’s test for comparisons among more than two groups. In all analyses, p < 0.05 was considered

statistically significant.
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