Aspirin causes rapid up-regulation of cyclo-oxygenase-2 expression in the stomach of rats

N. M. DAVIES, K. A. SHARKEY, S. ASFAHA, W. K. MACNAUGHTON & J. L. WALLACE Departments of Pharmacology & Therapeutics and Physiology & Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

Accepted for publication 9 July 1997

SUMMARY

Background: Cyclo-oxygenase-1 (COX-1) is believed to produce prostaglandins vital to mucosal defence, whereas cyclo-oxygenase-2 (COX-2) is induced at sites of inflammation. Little is known about the regulation of COX-2 in the stomach, particularly during the period following mucosal injury. In this study, we examined COX-1 and COX-2 expression shortly after administration of NSAIDs or ethanol.

Methods: Fasted rats were given aspirin, salicylate, indomethacin or ethanol (20% or 40%) orally. Three hours later the stomach was excised, the severity of damage scored and samples taken for RT-PCR of COX-1 and COX-2 mRNA and immunohistochemistry. Nitric oxide synthase mRNA (iNOS and eNOS) and activity were also measured.

Results: Aspirin, indomethacin and the higher concentration of ethanol produced widespread mucosal

damage, whereas salicylate and 20% ethanol caused only superficial epithelial damage. Aspirin caused a significant increase in COX-2 mRNA expression and a marked increase in COX-2 immunoreactivity, particularly in the superficial mucosa. Expression of COX-1 (mRNA and protein) was unaffected by aspirin, as were NOS mRNA expression and enzyme activity. Pre-treatment with prostaglandin $\rm E_2$ prevented the induction of COX-2 by aspirin. Salicylate and indomethacin caused modest increases in COX-2 immunoreactivity but no change in COX-2 mRNA. Neither concentration of ethanol affected COX-2 mRNA or protein expression, suggesting that this was a specific response to the aspirin, rather than to injury.

Conclusions: These results demonstrate a rapid upregulation of COX-2 expression in response to aspirin, possibly representing a compensatory response to inhibition of gastric prostaglandin synthesis.

INTRODUCTION

Prostaglandins and nitric oxide (NO) have the capacity to influence many components of what is collectively termed 'gastric mucosal defence'. The importance of these mediators is exemplified by the fact that suppression of mucosal prostaglandin or NO synthesis renders the gastrointestinal tract more susceptible to injury. In recent years, it has been clearly demonstrated that

Correspondence to: Dr J. L. Wallace, Department of Pharmacology and Therapeutics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.

enzymes responsible for the synthesis of prostaglandins and NO exist in multiple isoforms. Two forms of the cyclo-oxygenase (COX) enzyme have been characterized. The predominant isoform of COX in a normal stomach is COX-1,⁴ and its expression can increase in some circumstances.⁵ Conversely, COX-2 is not constitutively expressed in most tissues but can be induced by exposure to certain cytokines, mitogens and endotoxin, and is expressed at sites of inflammation, including in the gastrointestinal tract.^{5–7} Nitric oxide synthase (NOS) is also constitutively expressed in the stomach, most notably in the endothelium (eNOS) and in enteric neurons (bNOS).⁸ Inducible NOS (iNOS) can

© 1997 Blackwell Science Ltd 1101

be found expressed in the stomach following administration of endotoxin, ⁹ and the NO produced from this isoform can exert protective effects in the stomach. ¹⁰

The discovery of two distinct isoforms of COX has led to the proposal that selective COX-2 inhibitors will reduce inflammation while sparing the gastrointestinal tract from damage. 11-13 However, it has been suggested that, in situations in which the mucosa is inflamed, COX-2 is likely to be expressed and produce prostaglandins that contribute to mucosal defence and ulcer healing. 2. 6. 7 For example, in an animal model of colitis, administration of selective inhibitors of COX-2 resulted in exacerbation of tissue injury, while in a mouse model of gastric ulcer, administration of a selective COX-2 inhibitor delayed healing. Little is known of the regulation of COX-2 expression within the gastrointestinal tract following acute injury.

In this study, we examined the effects of administration of agents that produce mucosal injury on the expression of COX-2 (mRNA and protein). In particular, we examined the changes in COX-2 expression shortly after administration of NSAIDs or ethanol.

METHODS

Animals

Male Wistar rats weighing 175–200 g were used in all experiments. The rats were obtained from Charles River Breeding Farms (Montréal, Québec) and were housed in polypropylene cages and fed standard laboratory chow and tap water *ad libitum*. All experimental procedures were approved by the Animal Care Committee of the University of Calgary and were in accordance with the guidelines of the Canadian Council on Animal Care.

Acute gastric damage

Rats (n=6 per group) were fasted overnight then given aspirin (250 mg/kg), sodium salicylate (281 mg/kg), indomethacin (20 mg/kg), 20% or 40% ethanol, or vehicle (1% carboxymethylcellulose) orally. In each case, the total volume administered was 0.5 mL. The dose of sodium salicylate used was selected because it is equimolar to the dose of aspirin. Three hours later the rats were killed by cervical dislocation and the stomach was excised and opened by an incision along the greater curvature. The assessment of macroscopic damage was

performed by an observer unaware of the treatment the rats had received, as described previously. ¹⁴ Briefly, this method involved measuring the length of each lesion in millimetres, then summing the lengths of all lesions observed in each stomach.

Quantification of mRNA expression

Gastric COX-1, COX-2 and nitric oxide synthase (eNOS and iNOS) mRNA expression were examined using the reverse transcriptase polymerase chain reaction (RT-PCR) technique. Samples of the stomach (corpus) were taken from rats that were treated as described above and were immediately frozen in a 50% (w/v) guanidinium solution containing 26.4 mmol sodium citrate (pH 7.0), 0.528% sarcosyl and 0.0072% β -mercaptoethanol. For each 100 mg of tissue, 1 mL of the guanidinium solution was used. Total RNA was isolated using the acid guanidinium isothiocyanate method, as described previously. ¹⁵

The method used for RT-PCR was modified slightly from that described previously. ¹⁶ The housekeeping gene for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control. Briefly, 1 μg of RNA from each sample was reverse transcribed at 42 °C using Superscript RNase H Reverse Transcriptase Gibco BRL (Gaithersburg, MD, USA) and the appropriate reaction mixture (containing 2 μL 10X PCR buffer, 2 μL 10 mmol dNTP stock and 2 μL N₆ random hexamer stock). The enzyme was then deactivated by heating the samples to 95 °C for 10 min. After the reaction, 2 μL 10X PCR buffer. Two microlitres of the upstream primer (≈ 1 pmol) and 2 μL of the downstream primer (≈ 1 pmol) under investigation were then added to each tube.

DNA amplification was carried out under the following conditions: denaturation at 94 °C for 1 min, annealing at 55 °C for 30 s and extension at 72 °C for 1 min. To ensure complete denaturation of the DNA with no background polymerase activity, Taq DNA polymerase was added to the PCR mixture during the hot start of cycle 1. Optimal co-amplification of each primer with GAPDH was determined during preliminary trials (data not shown). The COX-1/GAPDH genes were co-amplified for 30/22 cycles, whereas the COX-2/GAPDH, eNOS/GAPDH and iNOS/GAPDH genes were co-amplified for 33/23, 29/22 and 30/23 cycles, respectively. Hence, the GAPDH upstream and downstream primers were added to the COX-1/COX-2/eNOS/iNOS PCR

mixture during the hot start of cycle 9, 11, 8 and 8, respectively.

After separation of the PCR products on a 2% agarose gel containing $10~\mu g$ ethidium bromide, a Polaroid picture of the gel was taken under ultraviolet light. Using a densitometer and National Institutes of Health software (Image), quantities of each product were normalized to control levels of GAPDH and expressed as densitometry units. The COX-1, COX-2, eNOS, iNOS and GAPDH RT-PCR products were made using primers based on published sequences (Table 1). $^{17-23}$

COX immunohistochemistry

Tissues from control rats and rats treated with acute aspirin, sodium salicylate, indomethacin and ethanol (20% or 40%) (n = 4-10 per group) were harvested 3 h post-treatment and fixed by immersion in Zamboni's fixative overnight at 4 °C. After fixation, they were washed in phosphate-buffered saline (PBS, pH 7.4) and processed for indirect immunofluorescence as cryostat sections (12 μ m). Sections were incubated in primary antibodies for 48 h at 4 °C. Primary antibodies raised in rabbit against a peptide sequence from the human COX-1 or $COX-2^{24}$ were used (1:500). Previous studies have demonstrated the specificity of these antibodies.⁶ Tissues were viewed with an epifluoresence microscope (Axioplan; Carl Zeiss Inc., Thornwood, NY) and photographed using TMax 400 ASA black and white film (Eastman Kodak Co., Rochester, NY).

Nitric oxide synthase activity

NOS activity was determined as the conversion of radiolabelled L-arginine to citrulline by the methods described previously. 9 Segments of the corpus (≈200 mg) were removed from rats killed via cervical dislocation 3 h after oral administration of 250 mg/kg aspirin, or 0.5 mL of 40% ethanol or vehicle, and stored at -70 °C for 7 days prior to analysis. Tissues were homogenized (30 s) using a Polytron homogenizer in $250 \,\mu\text{L}$ ice-cold buffer (HEPES 10 nmol, sucrose 320 nmol, dithiothreitol 1 nmol, EDTA 0.1 nmol, soytrypsin inhibitor 0.01 mg/mL, bean leupeptin 0.01 mg/mL and aprotinin 0.002 mg/mL) adjusted to pH 7.4 (8 mol NaOH) followed by centrifugation for 10 min at 14 000 \boldsymbol{g} at 4 °C. A 20 μ L sample of supernatant was incubated for 10 min at 37 °C in 50 μL of NOS reaction buffer comprising (final concentrations): KH₂PO₄ 50 mmol, MgCl₂ 1 mmol, CaCl₂ 0.2 mmol, valine 50 mmol, NADPH 0.3 mmol, L-arginine 3.15 mg/mL and [14C]-L-arginine 157 pmol (110 000 d.p.m./mL). The reaction was incubated in a 37 °C shaking water bath for 10 min. The reaction was arrested via the removal of the substrate. This was achieved by the addition of 0.5 mL of a 1:1 suspension of Dowex (AG 50 W-X8): water, followed by vortex mixing. The mixture was run into Dowex columns and rinsed with 2 mL of deionized water. Unreacted L-arginine binds to the resin, while L-citrulline is eluted. The eluent was collected and a 1 mL aliquot was added

Table 1. Primer sequences for RT-PCR

		Amplicon length	
Gene	Primer sequences	(base pairs)	Reference(s)
COX-1			
Upstream	5'-CCT TCT CCA ACG TGA GCT ACT A-3'		
Downstream	5'-TCC TTC TCT CCT GTG AAC TCC T-3'	1036	17
COX-2			
Upstream	5'-AGA CAG ATC ATA AGC GAG GAC C-3'		
Downstream	5'-CAC TTG CAT TGA TGG TGG CTG T-3'	1158	18-20
eNOS			
Upstream	5'-GGA GAA GAT GCC AAG GCT GCT G-3'		
Downstream	5'-CTT CCA GTG TCC AGA CGC ACC A-3'	224	21
iNOS			
Upstream	5'-ACA ACA GGA ACC TAC CAG CTC A-3'		
Downstream	5'-GAT GTT GTA GCG CTG TGT GTC A-3'	651	22
GAPDH			
Upstream	5'-CGG AGT CAAC GGA TTT GGT CGT AT-3'		
Downstream	5'-AGC CTT CTC CAT GGT GGT GAA GAC-3'	306	23

to 14 mL scintillation fluid for estimation of the radiolabelled products by ¹⁴C scintillation counting.

NOS activity was defined as the rate of citrulline formation and was further characterized by the effects of incubation *in vitro* with EGTA (1 mmol). Thus, basal NOS activity that was abolished by EGTA was taken as calcium-dependent constitutive NOS, whereas that not inhibited by EGTA incubation was taken as calcium-independent NOS activity.

Statistical analysis

All data are expressed as the mean \pm S.E.M. Comparisons among groups of data were made using one-way analysis of variance followed by a Student–Newman–Keuls test. With all analyses, an associated probability (P-value) of less than 5% was considered significant.

Materials

Sarcosyl and isopropanol were obtained from Sigma Chemical Company (St. Louis, MO). L-[U- 14 C]-arginine monohydrochloride was obtained from NEN-DuPont (Oakville, ON, Canada). β -mercaptoethanol was obtained from Bio Rad Laboratories Inc. (Mississauga, ON, Canada). PCR buffer and dNTP stock were obtained from Pharmacia Biotech Inc. (Mississauga, ON, Canada). Sodium citrate, phenol and superscript RNase H reverse transcriptase were obtained from Gibco BRL (Gaithersburg, MD). COX-1 and GADPH-primers were synthesized by University Core DNA Services (University of Calgary, Calgary, AB, Canada). The antibodies directed against COX-1 and -2 were generously provided by Dr Chan and Dr I. Rodger of Merck-Frosst Therapeutic Research Centre (Montréal, QC, Canada).

RESULTS

Acute gastric damage

Oral administration of aspirin, 40% ethanol or indomethacin caused extensive haemorrhagic damage in the corpus region of the stomach (Figure 1). The lesions were usually linear and confined to the corpus region, often located on the crests of the rugal folds. In contrast to these findings, and consistent with previous reports, ^{25, 26} the gastric mucosa of rats exposed to salicylic acid and 20% ethanol exhibited only superficial epithelial sloughing, with only a few haemorrhagic

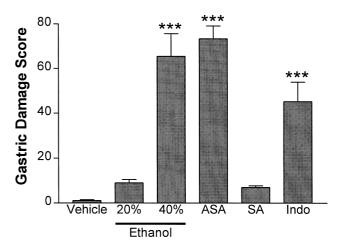


Figure 1. Extent of gastric damage observed 3 h after oral administration of aspirin (ASA 250 mg/kg), indomethacin (20 mg/kg), sodium salicylate (SA 281 mg/kg) or ethanol (20% or 40%). ***P < 0.001 compared to the vehicle-treated group.

erosions, and the mean gastric damage scores in these groups did not differ significantly from that in rats treated only with vehicle (Figure 1).

COX mRNA expression

Oral administration of aspirin at 250 mg/kg, a dose which inhibits systemic COX activity by >99%, ²⁷ significantly increased the expression of COX-2 mRNA in gastric tissues (Figure 2). However, neither of the ethanol concentrations tested, nor indomethacin or

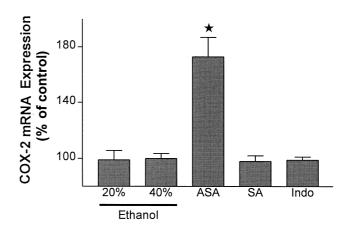


Figure 2. Gastric expression of mRNA for COX-2, 3 h after oral administration of aspirin (250 mg/kg), indomethacin (20 mg/kg), sodium salicylate (281 mg/kg) or ethanol (20% or 40%). The results are expressed as a percentage of the expression observed in vehicle-treated rats. Each group consisted of 4–10 rats. *P < 0.05 compared to the vehicle-treated group.

salicylate, significantly affected gastric COX-2 mRNA expression. Aspirin did not alter gastric expression of COX-1 mRNA (78 \pm 4% of control levels, n=6 per group).

COX immunohistochemistry

In tissues from control rats, COX-1 immunoreactivity was detectable and no significant changes were observed after aspirin treatment (data not shown). COX-2 immunoreactivity was not detectable in tissues from control rats (Figure 3A). In gastric tissue from rats treated with either 20% or 40% ethanol, COX-2 immunoreactivity was not observed (Figure 3B). In rats treated with aspirin, indomethacin or salicylic acid, there was diffuse staining for COX-2 in the mucosa. The most intense COX-2 immunoreactivity was evident after aspirin administration (Figure 3C), and was localized to the superficial mucosa. The nature of the cells staining for COX-2 is not yet clear.

Oral administration of prostaglandin E_2 prior to aspirin treatment resulted in a reduction in the gastric damage score from 73.4 ± 5.8 to 0.8 ± 0.5 (P < 0.001) and was accompanied by marked preservation of mucosal architecture. COX-2 expression in the gastric mucosa was still observed in this group, but it was substantially reduced from that observed in rats treated only with aspirin (Figure 3D). Expression of COX-2 mRNA in rats pretreated with PGE₂ did not differ significantly from that in control rats.

NOS mRNA expression and activity

Aspirin administration did not significantly affect expression of iNOS or eNOS mRNA in the stomach (Table 2). Ca²⁺-dependent and -independent NOS activity was detectable in homogenates of normal rat gastric mucosa (Table 2). Oral administration of aspirin 250 mg/kg did not significantly alter either form of NOS activity.

DISCUSSION

Prostaglandins play a key role in modulating gastric mucosal defence, and also appear to be important for repair of mucosal injury.^{1, 2} Indeed, prostaglandins have been shown to be important mediators of epithelial restitution in the stomach,^{28, 29} and their importance in repair of ulcers is underscored by the marked ability of

NSAIDs to interfere with this process. 30, 31 While it is now clear that there are at least two isoforms of cyclooxygenase (the principle enzyme responsible for prostaglandin synthesis), the relative contribution of each isoform to mucosal prostaglandin synthesis in various circumstances is not clear. In the normal stomach, only COX-1 is expressed in detectable amounts.^{4, 5, 7} Following chronic endotoxin administration or induction of chronic gastric ulcers, COX-2 expression is pronounced.5, 7 The results of the present study indicate that COX-2 can also be expressed very quickly after administration of aspirin, and possibly other NSAIDs. Aspirin caused a significant increase in COX-2 mRNA expression in the stomach, which was accompanied by a marked increase in immunohistochemically detectable COX-2 protein. Indomethacin (a potent inhibitor of COX-1 and COX-2) and salicylate (a weak inhibitor of both COX-1 and COX-2)¹¹ caused a modest increase in COX-2 protein expression in the stomach, but did not affect mRNA expression. The elevation in COX-2 expression in these circumstances was not a nonspecific response to injury, because administration of ethanol at concentrations causing superficial (20% v/v) or deep (40% v/v) mucosal injury failed to significantly alter mRNA or protein expression. Moreover, the effects of aspirin were specific to COX-2, because no effect on COX-1, iNOS or eNOS expression were detected. Like COX-2, iNOS is a rapidly inducible enzyme that is expressed at sites of inflammation and injury in the gastrointestinal tract.8

The dose of aspirin used in this study is sufficient to cause profound suppression of systemic COX activity 27 and prostaglandin synthesis by the stomach. 32 It is therefore possible that the increase in COX-2 expression following aspirin administration occurred as a response to diminished tissue prostaglandin synthesis. While this remains unproven, the observation that oral administration of PGE₂ prior to aspirin resulted in inhibition of the up-regulation of COX-2 expression supports this hypothesis.

It is interesting that aspirin had a much more pronounced effect on immunohistochemically detectable COX-2 protein expression than indomethacin or salicylate, and was the only treatment of the three to significantly increase COX-2 mRNA expression in this study. This may be due to the fact that, unlike other NSAIDs, aspirin irreversibly inhibits COX activity by acetylating a serine residue within the active site of the enzyme.³³ Moreover, there is evidence that, in contrast

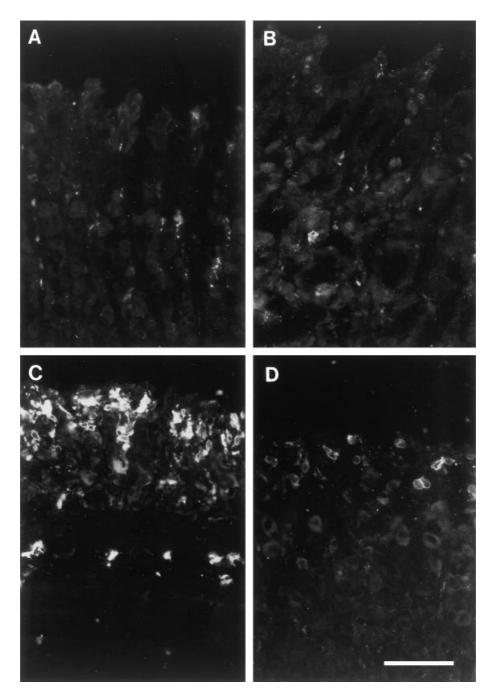


Figure 3. Fluorescence micrographs of COX-2 immunoreactivity in sections of stomach from normal (A) and treated (B–D) rats. COX-2 immunoreactivity was virtually absent in untreated control rats (A) and in rats treated with 20% ethanol (B), even though mucosal architecture was clearly disrupted in the latter group. In contrast, cellular COX-2 protein expression was markedly up-regulated in the damaged mucosa after treatment with aspirin (C). This up-regulation was to a large extent attenuated in rats receiving PGE_2 prior to aspirin (D), although some immunoreactive cells were still present in the mucosa. Scale bar 50 μ m.

to its effects on COX-1, aspirin does not render COX-2 completely inactive. Although prostaglandin generation is inhibited, aspirin-acetylated COX-2 has been shown to produce 15-hydroxyeicosatetraenoic acid.³³ The func-

tional significance of the 15-hydroxyeicosatetraenoic acid produced in this circumstance is not yet known. COX activity was not measured in this study, because a number of the test drugs (e.g. aspirin and

Table 2. Effects of aspirin on gastric iNOS and eNOS mRNA expression and activity

	Vehicle	Aspirin
iNOS mRNA expression (% of control)	100 ± 5	119 ± 4
eNOS mRNA expression (% of control)	100 ± 5	113 ± 2
iNOS activity (nmol/min/mg) eNOS activity (nmol/min/mg)	0.09 ± 0.01 0.94 ± 0.06	0.06 ± 0.03 0.60 ± 0.18

There were no significant differences between the vehicle- and aspirintreated groups. (n=6 per group for RT-PCR; n=4-5 per group for NOS activity).

indomethacin) profoundly suppress activity of COX-1 and COX-2 at the doses used, however, previous studies have shown that induction of COX-2 in the gastrointestinal tract is accompanied by increased prostaglandin synthesis from that isoform. For example, Reuter and co-workers⁶ documented increased COX-2-derived prostaglandin synthesis in the colon in association with increased COX-2 protein and mRNA expression, and Mizuno and co-workers⁷ showed a similar relationship in the mouse stomach following induction of an ulcer.

In summary, administration of aspirin at a dose that caused profound suppression of systemic COX activity and extensive gastric mucosal damage resulted in a rapid induction of COX-2 expression in the stomach. This effect could be reversed by administration of PGE_2 , which suggests that depressed mucosal prostaglandin synthesis may be the trigger for induction of COX-2. Moreover, the lack of induction of this enzyme by 20% or 40% ethanol, and the lack of induction of iNOS in response to aspirin, indicates that this effect was not a non-specific response to tissue injury.

ACKNOWLEDGEMENTS

This work was supported by grants from the Medical Research Council of Canada (MRC). Dr Wallace is a MRC Senior Scientist and an Alberta Heritage Foundation for Medical Research (AHFMR) Scientist. Dr Sharkey is an AHFMR Senior Scholar. Dr N. M. Davies is supported by a fellowship co-sponsored by the Canadian Association of Gastroenterology, Astra Canada, and the MRC. Mr Asfaha is supported by an MRC studentship. The authors thank Winnie Ho for her assistance in performing these studies.

REFERENCES

- 1 Wallace JL. Cooperative modulation of gastrointestinal mucosal defense by prostaglandins and nitric oxide. Clin Invest Med 1996; 19: 346–51.
- 2 Wallace JL. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology 1997; 112: 1000–16.
- 3 Whittle BJR. Neuronal and endothelium-derived mediators in the modulation of the gastric microcirculation: Integrity in the balance. Br J Pharmacol 1993; 110: 3–17.
- 4 Kargman S, Charleson S, Cartwright M, Frank J, Riendeau D, Mancini J, Evans J, O'Neil G. Characterization of prostaglandin G/H synthase 1 and 2 in rat, dog, monkey, and human gastrointestinal tracts. Gastroenterology 1996; 111: 448–54.
- 5 Ferraz JGP, Sharkey KA, Reuter BK, Asfaha S, Tigley AW, Brown ML, McKnight W, Wallace JL. Induction of cyclooxygenase-1 and -2 in the rat stomach during endotoxemia: role in resistance to damage. Gastroenterology 1997; 113: 195–204.
- 6 Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 1996; 98: 2076–85.
- 7 Mizuno H, Sakamoto C, Matsuda K, Wada K, Uchida T, Noguchi H, Akamatsu T, Kasuga M. Induction of cyclooxygenase-2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterology 1997; 112: 387–97.
- 8 Miller MJS, Grisham MB. Nitric oxide as a mediator of inflammation? You had better believe it. Med Inflammation 1995: 4: 397–405.
- 9 Brown JF, Tepperman BL, Hanson PJ, Whittle BJR. Lipopoly-saccharide induces Ca²⁺-independent nitric oxide synthase activity in rat gastric mucosal cells. Eur J Pharmacol 1994; 292: 111–14.
- 10 Tepperman BL, Soper BD. Nitric oxide synthase induction and cytoprotection of rat gastric mucosa from injury by ethanol. Can J Physiol Pharmacol 1994; 72: 1308–12.
- Mitchell JA, Akarasereenont P, Thiermann C, Flower RJ, Vane JR. Selectivity of non-steroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci 1994; 90: 11693–7.
- 12 Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K. Selective inhibition of cyclooxygenase-2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci 1994; 91: 3228–32.
- 13 Meade EA, Smith WL, De Witt DL. Differential inhibition of prostaglandin endoperoxide synthetase (cyclooxygenase) isoenzymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1991; 268: 6610–14.
- 14 Wallace JL, Whittle BJR. Role of prostanoids in the protective actions of BW755C on the gastric mucosa. Eur J Pharmacol 1985; 115: 45–52.
- 15 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–9.
- 16 Foley KP, Leonard MW, Engel JD. Quantitation of RNA using the polymerase chain reaction. Trends Genet 1992; 9: 380–5.

- 17 Takahashi Y, Taketani Y, Endo T, Yamamoto S, Kumegawa M. Studies on the induction of cyclooxygenase isozymes by various prostaglandins in mouse osteoblastic cell line with reference to signal transduction pathways. Biochem Biophys Acta 1994; 1212: 217–24.
- 18 Kennedy BP, Chan CC, Culp SA, Cromlish WA. Cloning and expression of rat prostaglandin endoperoxide synthase. Biochem Biophys Res Commun 1993; 197: 494–500.
- 19 Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, Wilson CB, Hwang D. Cloning of two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys 1993; 307: 361–8.
- 20 O'Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci USA 1992; 89: 4888–92.
- 21 Janssens SP, Shimoushi A, Quertermous T, Bloch DB, Blach KD. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 1992; 267: 14519–22.
- 22 Lyons CR, Orloff GJ, Cunningham JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 1992; 267: 6370–4.
- 23 Wong H, Anderson WD, Cheng T, Riabowol KT. Monitoring mRNA expression by polymerase chain reaction: the 'primerdropping' method. Anal Biochem 1994; 223: 251–8.
- 24 Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res 1995; 55: 2556–9.
- 25 Fromm D, Kolis M. Effects of sodium salicylate and acetylsalicylic acid on intramural pH and ulceration of rabbit antral mucosa. Surgery 1982; 91: 438–47.

- 26 Wallace JL, Whittle BJR. Picomole doses of platelet-activating factor predispose the gastric mucosa to damage induced by topical irritants. Prostaglandins 1986; 31: 989–98.
- 27 Wallace JL, McKnight W, Del Soldato P, Cirino G. Antithrombotic effects of a nitric oxide-generating, gastric-sparing aspirin derivative. J Clin Invest 1995; 96: 2711–18.
- 28 Wallace JL, Whittle BJR. Acceleration of recovery of gastric epithelial integrity by, 16,16-dimethyl prostaglandin E₂. Br J Pharmacol 1985; 86: 837–42.
- 29 Schmidt KL, Bellard RL, Smith GS, Henagan JM, Miller TA. Influence of prostaglandin on repair of rat stomach damaged by absolute ethanol. J Surg Res 1986; 41: 367–77.
- 30 Levi S, Goodlad RA, Lee CY, et al. Inhibitory effect of nonsteroidal anti-inflammatory drugs on mucosal cell proliferation associated with gastric ulcer healing. Lancet 1990; 336: 840–3.
- 31 Stadler P, Armstrong D, Margalith D, et al. Diclofenac delays healing of gastroduodenal mucosal lesions. Double-blind, placebo-controlled endoscopic study in healthy volunteers. Dig Dis Sci 1991; 36: 594–600.
- 32 Wallace JL, McKnight W, Bell CJ. Adaptation of the rat gastric mucosa to aspirin requires mucosal contact. Am J Physiol 1995; 268: G134–8.
- 33 O'Neill GP, Mancini JA, Kargman S, Yergey J, Yee Kwan M, Falgueyret J-P, *et al.* Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus: Inhibition by non-steroidal anti-inflammatory drugs and biosynthesis of 15-hydroxyeicosatetraenoic acid. Mol Pharmacol 1994; 45: 245–54.