8

COX-I and COX-2 inhibitors

C. J. Hawkey DM, FRCP

Division of Gastroenterology, University Hospital Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK

By inhibiting prostaglandin synthesis, non-steroidal anti-inflammatory drugs (NSAIDs) cause mucosal damage, ulceration and ulcer complication throughout the gastrointestinal tract. The recognition that there are two cyclo-oxygenase enzymes, one predominating at sites of inflammation (COX-2) and one constitutively expressed in the gastrointestinal tract (COX-I), has led to the important therapeutic development of COX-2 inhibitors. COX-2 is phylogenetically more primitive that COX-I and, while very similar, has critical differences, particularly the existence of a small pocket half way down the active enzyme site. A number of drugs achieve selectivity by binding to this pocket, including presumptively rofecoxib and celecoxib. Others, such as meloxicam, may inhibit COX-2 by different mechanisms.

Truly selective COX-2 inhibitors have been shown to have no effect on gastric mucosal prostaglandin synthesis, to cause no acute injury, and no chronic ulceration compared to placebo. Rofecoxib has, in a prospective systematic evaluation involving 8076 patients, been shown to reduce clinically significant ulcers, ulcer complications and gastrointestinal bleeding significantly compared to naproxen. Outcomes data for celecoxib have also been published although differences from the combined comparator agents (diclofenac and ibuprofen) did not reach statistical significance.

Use of aspirin in the class study has shown that the benefits of COX-2 inhibitors may be reduced by aspirin use. The VIGOR study has raised the possibility that some NSAIDs, particularly naproxen, may protect against vascular disease compared to COX-2 inhibitors (or placebo).

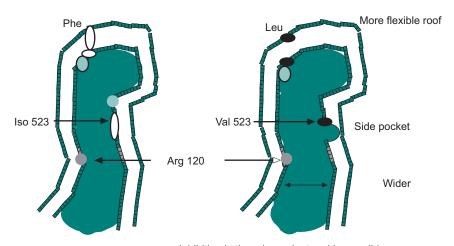
Key words: non-steroidal anti-inflammatory drugs (NSAIDs); cyclo-oxygenase (COX); selective COX-2 inhibitors; ulcer; stomach; duodenum; outcomes; ulcer complications; rofecoxib; celecoxib; cardiovascular coronary artery disease; coronary thrombosis; rheumatoid arthritis; osteoarthritis.

Although non-steroidal anti-inflammatory drugs (NSAIDs) damage the entire gastro-intestinal tract in humans, the main recognized pathology is in the stomach and duo-denum. By contrast, in rodents, non-aspirin NSAIDs ultimately cause more damage and ulceration in the small intestine, particularly the terminal ileum. Growing evidence shows that small-bowel ulceration, bleeding with consequent anaemia and perforation also occur in humans. In the colon, NSAIDs cause erosive damage and ulceration, provoke diverticular perforation and induce relapse of ulcerative (and probably Crohn's) colitis.

NSAIDS AND CYCLO-OXYGENASE INHIBITION

NSAIDs have a number of potentially toxic affects on the gastrointestinal tract. The property that is common to all those capable of doing damage is an ability to inhibit prostaglandin synthesis. This seems important because prostaglandins are central in protection against a wide variety of luminal insults. Defence mechanisms subserved by prostaglandins include maintenance of mucosal blood flow, secretion of bicarbonate and mucus, maintenance of a protective waxy hydrophobic surface layer and possibly more direct but less understood 'cytoprotection' of epithelial and edothelial cells, possibly as a result of histo-dilution by permeating fluids. In addition, prostaglandins secreted by myofibroblasts appear to co-ordinate epithelial cell secretion, again potentially protecting by a process of dilution within the lumen. Prostaglandins derived from macrophages (and other sources) are capable of down-regulating lymphocyte inflammatory responses and may mediate oral tolerance to luminal antigens. The protection is a subject to the protection of potentially protection.

Inhibition of prostaglandin synthesis thus may predispose to injury by a wide variety of luminal insults, including acid, bile salts and antigens, albeit probably by different mechanisms. By limiting prostaglandin synthesis, NSAIDs abrogate these defensive reactions to such stimuli.


CYCLO-OXYGENASE ISOENZYMES

Inhibition of prostaglandin synthesis is, of course, the central mechanism by which NSAIDs reduce inflammation and pain in arthritis and other inflammatory conditions. For many years, this led to a nihilistic perception that there could be no therapeutic gain without the pain of gastrointestinal toxicity. This was changed by the discovery that there are (at least) two cyclo-oxygenase (COX) enzymes: a house-keeping enzyme, COX-I, constitutively expressed throughout the body and of particular importance for gastrointestinal protection, and an inducible cyclo-oxygenase, COX-2, expression of which is enhanced by cytokines, growth factors and other inflammatory ulcerogenic stimuli. 9-12 This recognition opened the way to development of selective inhibitors of the inducible cyclo-oxygenase that, in theory, would leave gastrointestinal COX-I and thereby mucosal defensive reactions untouched.

Such is the importance of NSAIDs in symptom control that this recognition stimulated the development of a range of selective COX-2 inhibitors that has gone from the initial recognition of COX-2 to widespread availability backed up by large outcomes studies in under 10 years. Initially, drugs were screened (see below) for COX-2 selectivity on a pragmatic basis, and the drugs celecoxib and rofecoxib^{13–16} were discovered by this process. Subsequent elucidation of the three-dimensional structure of first COX-1 and later COX-2^{16–19} has shown how similar these enzymes are, how potentially difficult it might be to achieve selectivity and, therefore, remarkably, how fortuitous the pragmatic discovery of these drugs has been.

Both enzymes contain an active catalytic site that consists of a long hairpin molecule in roughly the shape of a prostaglandin molecule that is responsible for the initial synthesis of the endoperoxide prostaglandin PGG₂ and PGH₂ (Figure I). The channel is largely lipophilic but amphiphilic helices bind the enzyme to the upper leaves of the endoplasmic reticulum linking the active site to an EGF-like domain. When injury occurs, precursor fatty acids such as arachidonic acid are sucked into the large lipophilic channel where a tyrosine at position 385 carries a radical from a nearby haem molecule to achieve cyclicization. Both COX-1 and COX-2 have a polar arginine

Cox-1 and Cox-2 are different

Inhibition is time-dependent and irreversible

Figure I. Differences between constitutive cyclo-oxygenase (COX)-I and inducible COX-2. Based on Hawkey CJ, 1999 Lancet 353:307-314 and reproduced with permission.

molecule at position 120, half way down the channel, and non-selective inhibitors can block both enzymes at this point by simple stearic hindrance.

There is a high degree of homology between COX-1 and COX-2: 61% of amino acids are identical and 84% are similar. In the upper active site there is >90%homology. Only a limited number of sites with the potential for selective exploitation exist. Of particular importance is a substitution at position 523 between isoleucine (in COX-1) and valine (in COX-2). The single methyl group difference is sufficient to create extra space in the active site and this has become recognized as the COX-2 pocket. It is at this site that rofecoxib, celecoxib and other related tri-cyclic enzymes appear to act. These drugs are too bulky to access COX-I easily and hence selectivity is achieved. Another difference is substitution of leucine (in COX-2) for phenylalanine (in COX-I), which leads to greater flexibility of the roof of the active site in COX-2. It is possible that chemically dissimilar drugs such as meloxicam may act here.

Another difference between COX-I and COX-2 is that binding of NSAIDs to COX-I is by reversible hydrogen-bonding and inhibition by simple stearic hindrance. The effect of COX-2 inhibitors is time-dependent, and studies of fluorescence quenching suggest that inhibition depends upon an active process leading to closure of the lower enzyme site. 19-21 This may trap the inhibitor, resulting in a meta-stable transitional state and, essentially, irreversible binding. It is said that failure to recognize the time-dependence of COX-2 inhibition led to the selectivity of Dup 697 not to be recognized.

AVAILABLE COX-2-SELECTIVE DRUGS

Essentially two groups of drugs have been shown to have COX-2 selectivity. One group, designated by the World Health Organization as coxibs, include celecoxib and rofecoxib, tri-cyclic drugs that have been shown to, or are believed to, access the COX-2

pocket. 14-16 Another group of drugs that are structurally dissimilar are previously developed NSAIDs that were retrospectively found to be COX-2-selective. Drugs within this group include etodalac, meloxicam and nimesulide. 22-26 Because coxibs were known to be selective when they were developed, their clinical evaluation has been from the standpoint of their COX-2 selectivity and focused on showing their gastrointestinal safety from conventional NSAIDs in a systematic way. Conversely, drugs retrospectively found to be COX-2 inhibitors have inevitably not been evaluated for selective COX-2-related properties to such rigorous paradigms. Consequently, although it is probable that they share some of the safety features of coxibs the amount of supporting evidence is less.

EVALUATION OF COX-2 SELECTIVITY

A variety of methods have been used to show COX-2 selectivity. Many early studies used isolated enzyme systems and found selectivities in the hundred- or thousand-fold range. A consensus emerged that whole-cell systems were preferable, at least for the pragmatic evaluation of selectivities, because they would reflect protein binding and transcellular drug distribution. The assays most widely used to compare drugs are, or have been, developed from the whole blood assay described by Patrignani and colleagues. In this assay, whole blood is either allowed to clot under standardized conditions, with production of thromboxane from platelets (COX-I assay), or incubated for 24 hours with lipopolysaccharide to induce COX-2 (COX-2 assay, Figure 2). Since these two assays have totally different time courses (and differences may therefore arise because of differences in drug stability) and because there is a delay to COX-2 activation, a modification of this assay (the William Harvey modified assay) using pre-stimulated human A-549 monocytic cells to measure COX-2 activity, has been developed. Page 19

Figure 3 shows the selectivity of a range of drugs assessed in the modified William Harvey assay. As can mostly be seen, of the drugs compared in this study, rofecoxib was the most selective although more selective drugs have subsequently emerged.³⁰

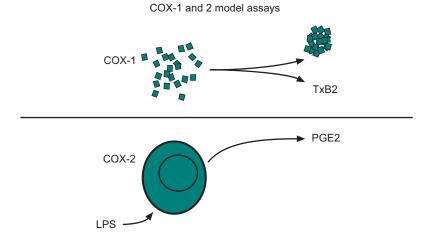


Figure 2. Schematic representation of COX-I and COX-2 synthesis in the whole-blood selectivity assay.

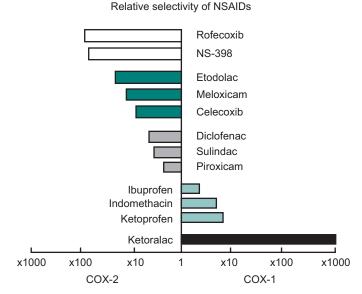


Figure 3. Relative selectivity of some pharmacological agents. Derived from data in Warner et al 1999 (Proceedings of the National Academy of Sciences of the USA 96: 7563-7568) with permission.

Perhaps surprisingly, celecoxib showed less selectivity than that seen with meloxicam or etodalac. Although ibuprofen is an NSAID of low toxicity, this and other assays have shown that it is somewhat COX-I-selective; it seems likely that its low toxicity may more reflect the low doses at which it tends to be used in European countries.

ROFECOXIB

Acute studies

As well as being selective in the whole-blood and other assays, rofecoxib has also been shown directly to spare gastric mucosal prostaglandin synthesis at supra-therapeutic doses (up to 50 mg daily) in humans^{31,32} (Figure 4). By comparison, naproxen 500 mg bid led to approximately 70% inhibition. This may explain why rofecoxib at a very high dose (250 mg) caused no acute injury to the gastroduodenal mucosa compared to placebo (Figure 5).³³ High doses of rofecoxib (50 mg) also lacked indomethacin's ability to enhance intestinal permeability³⁴ and ibuprofen's ability to introduce whole-gut chronic gastrointestinal bleeding.35

Chronic patient studies

In large, therapeutic studies in patients, rofecoxib 12.5 mg and 25 mg daily has been shown to be as effective as ibuprofen 2.4 g daily or diclofenac 150 mg daily.^{36–38} The effect of rofecoxib 25 mg and the supratherapeutic dose of 50 mg daily on endoscopically detected ulceration have been compared with ibuprofen 2.4 g daily in two large studies of identical design in osteoarthritis patients. 39,40 Over 3 months, neither dose of rofecoxib caused any significant increase in ulceration compared to placebo (4.7

Rofecoxib: no effect on *ex-vivo* human gastric mucosal PGE₂ synthesis

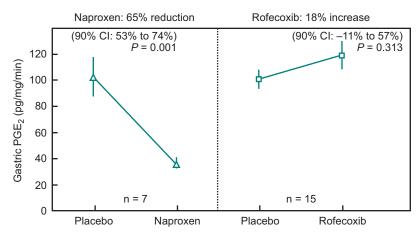


Figure 4. Inhibition of human gastric mucosal PGE ₂ synthesis by naproxen Ig daily but not by rofecoxib 50 mg daily. Reproduced from Wight et al 2001, Gastroenterology.

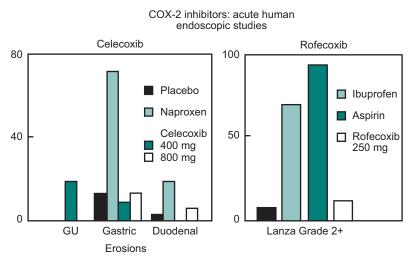
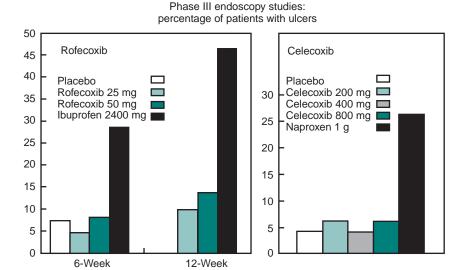



Figure 5. Acute endoscopic studies of celecoxib and rofecoxib. Data derived from Lanza et al 1999, Alimentary Pharmacology & Therapeutics 13: 761–767, with permission.

and 8.1% versus 7.3%) and, for rofecoxib 25 mg, the comparison with placebo met prespecified criteria for equivalence (Figure 6). Over 3 and 6 months the incidence of endoscopic ulcers in patients taking ibuprofen 2.4g daily was four times higher than with rofecoxib, rising from 28.5% at 3 months to 46.4% at 6 months.

Figure 6. Phase III endoscopic studies of rofecoxib and celecoxib. The left-hand panel shows combined data of two studies with rofecoxib, derived from Hawkey (2000, Arthritis and Rheumatism 43: 370-377), with permission. The right hand panel shows some data derived from Simon et al (1999, JAMA 282: 1921-1928) with permission.

The effect of rofecoxib on ulcer 'outcomes'

There has been some scepticism about endoscopic studies despite evidence that endoscopic ulcers and even erosions are predictive of clinical outcomes.⁴¹ In an effort to achieve a deletion of the labelling traditionally given to NSAIDs that warns of ulcer complications, a large study, comparing the development of clinically important ulcers with rofecoxib 50 mg and naproxen 500 mg bid has been carried out. 42 In the VIGOR study, 8076 patients with rheumatoid arthritis were randomized to receive either the supratherapeutic dose of rofecoxib or a standard dose of naproxen (Table I). Recruited patients were not endoscoped routinely during the study but only if clinical developments required this. The primary endpoint of the study was clinical upper GI events (perforation, obstruction, bleeding or symptomatic ulcer). The secondary endpoints were complicated upper gastrointestinal events (perforation, obstruction and major upper gastrointestinal bleeding). An independent blinded adjudication committee evaluated the validity of reported endpoints. In addition, an analysis of all episodes of GI bleeding, whether confirmed or unconfirmed, and whether upper or lower, was carried out.

In this study there were 177 confirmed upper GI clinical events and 53 complications (of which 43 were ulcer complications). As shown in Figure 7, the use of rofecoxib was associated with a reduction in all upper GI events, in complicated events and in gastrointestinal bleeding. An analysis of the effect of rofecoxib in patients with and without growing independent risk factors was carried out (data presented to FDA February 8th 2001).⁴³ This showed that patients under 65 without a past history, who were negative for Helicobacter pylori and not on steroids, had 5.1 events per 100 patient-years on naproxen and 2.6 per 100 patient-years on rofecoxib (51% reduction). In those without such risk factors, the event rate was 1.9 per 100 patient-years on

Table I. VIGOR and CLASS compared.		
	VIGOR Rofecoxib 50 mg	CLASS Celecoxib 400 mg bid
Patients	8076 RA	c. 8059 OA (72%) + RA
Aspirin	No	≤325 mg (21%)
NSAIDs	Naproxen Ig	Diclofenac 150 mg Ibuprofen 2.4 g
Duration	9.2 (13)	c. 9 (13)
Primary endpoint	Clinically significant UGI events	Complicated ulcers
Secondary endpoint	Complicated events	Clinically significant ulcers
Analysis	ITT (Life table)	Crude, censored (3 days -6 months)

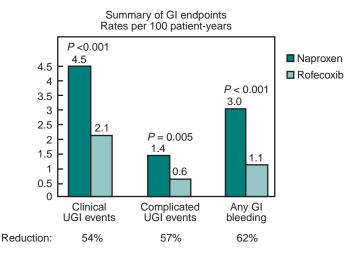


Figure 7. Reduction in gastrointestinal endpoints with rofecoxib 50 mg daily compared to naproxen Ig daily.

naproxen and 0.2 per 100 patient-years on rofecoxib (88% reduction, although with wide confidence intervals). In this study there was also a reduction in the number of discontinuations for dyspepsia, abdominal pain and epigastric discomfort.

CELECOXIB

Acute studies

Although celecoxib has been shown to be selective in recombinant enzyme and whole-blood assays (Figure 3), there are no data on its ability to spare gastric prostaglandin synthesis in humans. Nevertheless, high doses of celecoxib have been shown not to cause any more acute gastroduodenal injury than placebo (Figure 5). 44.45 There are no reports of the effects of celecoxib on intestinal permeability or chronic blood loss.

Chronic patient studies

Unlike rofecoxib, celecoxib has been subject to a full phase III evaluation for efficacy in both rheumatoid arthritis and osteoarthritis. 16,45-48 The main comparator drugs have

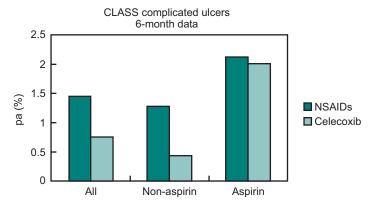


Figure 8. Reduction in complicated ulcers with celecoxib 400 mg bid, compared to ibuprofen 2.4 g daily or diclofenac 150 mg daily. The effect in patients not using aspirin is statistically significant. The effect in patients using aspirin is not.

been diclofenac (150 mg daily) and naproxen (1 g daily). These studies have shown no significant difference between celecoxib and non-selective NSAIDs in efficacy.

In six studies, the effect of celecoxib on gastroduodenal ulceration over periods of up to 6 months has also been evaluated. 45,48 In some of these studies sequential endoscopy was conducted whereas others evaluated endoscopic findings at the end of the trial. In five of the six studies, celecoxib showed significantly less mucosal injury than the active NSAID and did not differ significantly from placebo (Figure 6).

Outcomes study of celecoxib

Like rofecoxib, celecoxib has been evaluated for its ability to reduce the rate of development of clinically significant ulcers (Table 1).⁴⁹ The Celecoxib Largescale Assessment of Safety Study (CLASS) was similar in size and design to the Vioxx In Gastrointestinal Outcomes Research (VIGOR) study, but with some differences. Patients with both osteoarthritis and rheumatoid arthritis were studied, ulcer complications were the primary endpoint, and although the study lasted for a median of 9 months, only data over the period of 3 days to 6 months were included in the trial publication. Full data have recently been made available in the context of FDA Advisory Board hearings on February 7th 2001.

Overall, results reported for celecoxib in the paper describing the CLASS study were similar to those seen with rofecoxib in the VIGOR study (Figure 8). The reduction in upper GI complications (from 1.5 to 0.76%), the primary endpoint, fell short of statistical significance (P = 0.09). The reduction in all ulcers was statistically significant. As with rofecoxib, the overall incidence of GI symptoms was significantly lower in patients taking celecoxib than in those taking the comparator NSAID. Also reported was a lower incidence of anaemia, fewer abnormalities in liver function tests and a reduction in the overall incidence of renal adverse effects.

However, these published data have to be interpreted with caution in the light of the full trial data reviewed by the FDA Advisory Board meeting. These data show no reduction in ulcer complications with celecoxib (crude 52 week rate 0.43%) compared to diclofenac (0.50%) or ibuprofen (0.55%, P = 0.450) over 1 year. However, the

reduction in all ulcer events remained significant (crude rate 1.05% with celecoxib), principally due to a difference from ibuprofen (1.76%) rather than diclofenac (1.30%).

Differences between celecoxib and comparators may have failed to emerge because use of aspirin in 21% of patients appeared to abrogate any benefits of celecoxib (Figure 8). Among patients not taking aspirin, differences in all ulcer events were more pronounced compared to ibuprofen (crude 53 week rate 0.68% versus 1.78%), although not diclofenac (0.64%). Among these patients there was a significant reduction in ulcer complications over 26 weeks (P = 0.037) and a trend (P = 0.185) to reduction over 52 weeks, again attributable to differences between celecoxib and ibuprofen rather than diclofenac.

SERENDIPITOUS COX-2-SELECTIVE DRUGS

Meloxicam, etodalac and nimesulide have all been found in whole-blood assays to have selectivity comparable to that of celecoxib²⁹, although less than that of rofecoxib. They may also be as safe as celecoxib but the evidence supporting such a proposition is less well developed. These drugs have been subjected to neither a programme of endoscopic analysis as large as that for the coxibs, nor evaluation in prospective outcomes studies, although some post-marketing data have been published. It has also become clear that diclofenac is slightly COX-2-selective, perhaps about twofold.²⁹ As diclofenac has been a comparator NSAID in many studies, there is a wide body of evidence to show that it is associated with more gastrointestinal toxicity than celecoxib and rofecoxib, which may help to define how much COX-2 selectivity is needed to avoid such toxicity.

ETODALAC

In vitro and ex vivo studies using recombinant or whole-blood assays have consistently suggested that etodalac has moderate COX-2 selectivity, possibly similar to that of celecoxib.^{22,29} Two studies have shown that etodalac lacks the ability of naproxen to inhibit ex vivo gastric mucosal prostaglandin synthesis.^{50,51} These studies have also shown that this is associated with a reduction in acute and chronic gastrointestinal injury, in both volunteers⁵² and patients.⁵³ In studies lasting between 3 months and 3 years, the incidence of ulcers presenting clinically tended to be lower, amounting to two in 694 patients on etodalac 300–1000 mg per day compared to 15 in 689 on naproxen I g daily, piroxicam 20 mg daily or ibuprofen 2.4 g daily.^{54–57} There have been no prospective or ad hoc studies of the effect of etodalac usage on presentation with ulcer complications. There has been insufficient use of etodalac for assessment of its toxicity to emerge from epidemiological studies that have investigated the risks of individual NSAIDs.^{58,59}

NIMESULIDE

Nimesulide possesses a structure which may allow access to the COX-2 binding site. ⁶⁰ In vivo and ex vivo whole-blood and recombinant enzyme assays suggest that nimesulide possesses moderate COX-2 selectivity, comparable to that seen with celecoxib, meloxicam or diclofenac. ^{22,61–63}

Ex vivo studies suggested that nimesulide had little effect on gastric mucosal prostaglandin synthesis in vitro⁶⁴ but such studies could reflect failure to achieve tissue penetration. However, after dosing in volunteers, nimesulide was shown to have no effect on prostaglandin synthesis compared to naproxen.⁶⁵ In a small volunteer study there were suggestions that nimesulide caused less acute injury than naproxen. 66 However, there is no systematic body of post-marketing data or prospective study of GI complications with nimesulide. Epidemiological studies do not necessarily support the proposition that use of nimesulide is associated with reduced ulcer complications.⁶⁷ It is possible that therapeutic doses of nimesulide are too high for selectivity to be evident.⁶⁸ However, nimesulide appears to lack the ability of naproxen to cause smallbowel injury in rats and humans. 26

MELOXICAM

Meloxicam has a structure that does not predict an ability to access the COX-2 pocket. Nevertheless, in vitro and ex vivo studies have fairly consistently shown COX-2 selectivity comparable to that of celecoxib, etodalac and nimesulide^{22,29,61} although selectivity is not complete. 69,70 Presumably meloxicam inhibits the COX-2 enzyme by a different mechanism, possibly exploiting increased flexibility of the inner shell of the roof of the enzyme.

In one study, meloxicam did not inhibit human gastric mucosal prostaglandin synthesis.⁷¹ However, the comparator drug piroxicam had no effect either, raising questions about the validity of the method. In acute studies, meloxicam 7.5 mg (but not 15 mg) causes significantly less injury than piroxicam 20 mg.⁷² In a second study⁷³, there was a trend towards less mucosal injury with meloxicam 15 mg than with piroxicam 20 mg. A review of early patient studies⁷⁴ found significantly fewer upper GI perforations, ulceration or bleeding with meloxicam 7.5 mg or 15 mg than with piroxicam or naproxen; the differences from diclofenac 100 mg were not significant. Later studies have tended to confirm a slight trend to reduced ulcer events with meloxicam compared to comparators, including piroxicam and diclofenac.^{75–80} However, these studies and a meta-analysis⁸¹ have emphasized particularly the improved symptomatic tolerability of meloxicam compared to comparators. It is possible that a lower rate of dyspepsia might blunt evaluation of the true ulcerated patients on meloxicam.

In a recent large, non-randomized observational study, meloxicam was associated with reduced symptoms and GI bleeding compared to comparator NSAIDs (diclofenac, ibuprofen, piroxicam or indomethacin).82 A nested case-control study of the UK general practice research database (GPRD), while not showing any increase in gastrointestinal problems with meloxicam compared to diclofenac, naproxen, or piroxicam, was probably too small to establish whether meloxicam was or was not better than these comparators. As with nimesulide, it is possible that meloxicam loses COX-2 selectivity, particularly at higher doses.⁶¹

COMPARISONS OF COXIBS WITH ANALGESIC DRUGS

A meta-analysis of analgesics used in standardized dental pain studies suggested that COX-2 inhibitors could represent optimal control of acute pain, with the number needed to treat to avoid one episode of dental pain being lower than that with other drugs (A. Moore, personal communication). This is principally because COX-2

inhibitors appear to be more effective than paracetamol and better tolerated than NSAIDs and opiate analgesics such as tramadol. Direct comparisons of COX-2 inhibitors with paracetamol are emerging and, despite earlier assertions that paracetamol is as effective as NSAIDs (usually based on small studies)^{83–85}, these studies show, not surprisingly, better efficacy than paracetamol.⁸⁶

RENAL EFFECTS

COX-2 plays a complex and important role in renal pathophysiology⁸⁷⁻⁹³ that is not fully understood. Adverse effects of non-specific NSAIDs include, particularly, decreased sodium excretion, decreased potassium excretion, and reduced renal perfusion 90,94, and emerging evidence suggests some if not all of these effects are shared by selective COX-2 inhibitors. This is not surprising given the central role that COX-2 appears to play in renal function. COX-2 is expressed, constitutively in macula densa, and in the thick ascending limb of Henle⁹³ where it is steroid-suppressible.⁹⁵ COX-2 is also expressed in renal microvessels. COX-2 has potentially opposite effects on salt and water retention and renal blood flow in different sites of the kidney and may vary by model. In the macula densa, COX-2 appears to play an important role in the release of renin in response to salt deprivation. Elsewhere, such as in the thick ascending limb of Henle, mono-oxygenators are also expressed and can metabolize arachidonic acid to 20-HETE. 92 20-HETE has a powerful vasoconstricting action that is partly abrogated by the ability of COX-2 on pre-glomerular microvessels to provide an alternative pathway (to prostaglandins) or to metabolize 20-HETE (to vasodilator 20hydroxy prostaglandins). 97 Cyclo-oxygenase inhibition results in substantial increases in 20-HETE, especially in patients on a low-salt diet, and this effect predominates so that cyclo-oxygenase inhibition leads to fluid retention despite paradoxically interfering with renin release.

What is not clear is whether COX-I or COX-2 products contribute most to renal blood flow and creatinine clearance or whether this varies with sodium status. Acute pathophysiological studies have shown that under conditions of sodium restriction (when COX-2 is induced) subjects respond to COX-2 inhibition in a way that is similar to that seen with nonselective NSAIDs, with transiently reduced sodium excretion and a persistent reduction in glomerular filtration rate. ^{89,98} Under higher sodium conditions, COX-I may contribute more to renal blood flow and glomerular filtration. ⁹⁹

Certainly, in patient studies there is an increased rate of fluid retention compared to placebo, with both selective and non-selective COX inhibitors. 90,100 In most studies, the proportion of patients experiencing such problems has been similar to that seen with non-selective NSAIDs, although in the CLASS study a reduced incidence on celecoxib compared to diclofenac or ibuprofen was reported. It is not clear whether this reflects effective dose or the non-linear characteristics of celecoxib absorption or some other mechanism.

CARDIOVASCULAR EFFECTS OF COX-2 INHIBITORS

Early concerns that selective blockade of COX-2 might result in patients not attaining putative incidental cardiovascular benefits of NSAIDs were reinforced with the discovery that COX-2 was an important source of prostacyclin and that both celecoxib

and rofecoxib lead to reductions in total body production of prostacyclin as measured by urinary excretion of metabolites. 99,101 However, early studies showed no excess of cardiovascular events, and in fact in one study there appeared to be a significant reduction in myocardial infarction with rofecoxib compared to ibuprofen, diclofenac or nabumetone. 102,103

However, by contrast, in the VIGOR study there was a significantly higher level of myocardial infarction in patients taking rofecoxib compared to naproxen.⁴² Such a difference was not seen between celecoxib and ibuprofen/diclofenac in the CLASS study. 49 The results have proved controversial and difficult to disentangle. Because the comparison was not a pre-specified hypothesized one, and the result in the VIGOR study differed from results in phase III studies, it may have occurred by chance. Alternatively, it could have reflected a reduced myocardial infarction rate on naproxen. Certainly some data suggest that naproxen differs from other NSAIDs in causing sufficient inhibition of platelet thromboxane synthesis to have an aspirin-like effect over the 24-hour period of dosing 104 (data presented on rofecoxib to FDA, February 8th 2001). Non-evaluated data presented at a recent FDA hearing suggest a relative risk of 0.6 for myocardial infarction associated with naproxen use. Significant differences in myocardial infarction rates between celecoxib and comparator NSAIDs were not seen in the CLASS study, although absolute rates were very similar to those seen in patients on rofecoxib in the VIGOR study. This may have been firstly because aspirin use was allowed (and seen in 21% of patients) and secondly because the comparator NSAIDs (ibuprofen and diclofenac) are not sufficiently powerful or prolonged as inhibitors of platelet thromboxane to exert an aspirin-like effect (data presented on rofecoxib to FDA, February 8th 2001). This is an important finding that requires further evaluation. The therapeutic implications are that patients who require aspirin should have it but (as seen in the CLASS study) some or all of the advantages of COX-2 inhibitors may then be lost. An alternative but as yet unexplored strategy is that naproxen could be used in such patients.

CELECOXIB OR ROFECOXIB: WHICH IS BEST?

Both drugs appear to have very good gastroduodenal safety. Competitive controversy has tended to focus on non-GI issues. Neither drug is particularly soluble, and both have a moderately long t-max. 16,106,107 In addition, absorption kinetics with celecoxib are not fully dose proportional. ¹⁰⁸ The potential acute efficacy disadvantages of modest absorption can be overcome by using higher doses, and rofecoxib 50 mg has been shown to have an analgesic efficacy in models of dental pain, and for relief of pain in dysmenorrhoea, in osteoarthritis and post-operatively. 109-112 There is a lesser body of evidence favouring celecoxib which, unlike rofecoxib, has not attained a license for acute pain. Differences in effective dose may account for the results of one study that shows rofecoxib 50 mg to be substantially and significantly more effective than celecoxib 200 mg as treatment for dental pain. 112

Differences in effective dose may also account for emerging differences in efficacy and adverse effects of marketed doses of the two drugs. Intriguingly, two studies of similar design have resulted in essentially complementary findings in comparisons of rofecoxib and celecoxib. In a study sponsored by Merck, rofecoxib 25 mg daily was shown to be significantly more effective in osteoarthritis than celecoxib 200 mg daily, and 12.5 daily was numerically better than celecoxib.86 Conversely, in a Pfizer-sponsored study of the same doses, rofecoxib 25 mg daily caused more hypertension than did celecoxib 200 mg daily (personal communication, Uznam Azaz). Given the importance of COX-2 in renal function, it seems implausible that one inhibitor, at equally effective doses, would cause fluid retention while the other would not. It seems more likely that the two marketed doses of rofecoxib may be somewhat more potent than the two marketed doses of celecoxib and that mechanism-related adverse effects are dose-dependent. An additional factor could be the relatively poor absorption of celecoxib (with non-liver-absorption characteristics) which may make it more difficult to achieve levels impacting on renal function. More experience is necessary to define equally potent doses of celecoxib and rofecoxib before such issues can be resolved.

To these differences must be added the data recently presented to the FDA (February 7th, 2001) which showed that there were no differences in the study's primary endpoint of ulcer complications over the full duration of the trial. While the study may well have failed to demonstrate a true effect, because of inadequate power and design flaws, the more clear-cut result of the VIGOR study must give greater confidence in the GI safety of this more selective COX-2 inhibitor.

WHICH COX-2 INHIBITOR TO SELECT?

There is little doubt that rofecoxib probably has none of the gastrointestinal toxicity of non-selective NSAIDs and that, despite the inconclusive results of the CLASS study, toxicity is substantially reduced with celecoxib as well. There is a significant chance that a similar consideration applies to those drugs that have been serendipitously discovered to be COX-2 selective, but the evidence for this is much more limited. In particular, while the strategy with celecoxib and rofecoxib has been to test supra-therapeutic doses of the drugs against normal doses of NSAIDs because the issue to be established was well defined, the pragmatic testing of meloxicam, nimesulide and etodalac has been quite different. In a number of studies where GI safety has been shown compared to that of non-selective comparators, relatively low doses have been used and dropouts for lack of efficacy have tended to be higher for both meloxicam and nimesulide of the place of their safety is lost at higher doses. Thus, while the latter drugs tend to be somewhat less expensive than the coxibs, the evidence for their safety is as yet much less secure.

WHO SHOULD RECEIVE COX-2 INHIBITORS?

A truism has grown up that it is patients at high risk who should be treated with COX-2 inhibitors. This may not be rational. While the absolute reductions in such patients are somewhat (though not greatly) higher than the absolute reductions in low-risk patients, substantial risk, probably attributable to risk factors, remains. By contrast, when low-risk patients use COX-2 inhibitors, limited data suggest that their risk of ulcer disease becomes virtually nil:¹¹⁴ data presented on celecoxib to FDA on February 7th 2001⁴³ and data presented on rofecoxib to FDA on February 8th 2001 (Laine, 2001 FDA). In consequence, such patients may need no other monitoring or therapy while high-risk patients may need additional measures such as eradication of *Helicobacter pylori* (where relevant) or co-therapy with proton pump inhibitors. Pragmatic trials are needed to resolve whether use of COX-2 inhibitors or use of co-therapy are better strategies with and without non-drug-related risk factors.

Practice points

- COX-2 inhibitors should be considered for all patients requiring analgesia. Safety improvements are similar for those at high and low risk
- patients with additional risk factors may need additional or alternative strategies
- acid suppression may be needed in addition or instead of COX-2 inhibitors in patients taking (low-dose) aspirin and with active and possibly previous ulceration
- to minimize GI side-effects, cardiovascular prophylaxis should involve no more than 75/82.5 mg of aspirin and should be restricted to patients with existing vascular disease

Research agenda

- direct comparisons of individual COX-2 inhibitors
- evaluation of COX-2 inhibitors to determine whether they have any effect on inflammatory bowel disease
- comparison of COX-2 inhibitors with non-selective NSAIDs and proton pump inhibitors, for their effects on dyspepsia, endoscopic ulceration, ulcer complications and critical vascular and gastrointestinal events

REFERENCES

- I. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biology 1971; 231: 232-235.
- 2. Hawkey CJ. Non-steroidal anti-inflammatory drug gastropathy. Gastroenterology 2000; 119: 521-535.
- 3. Pihan G & Szabo S. Protection of gastric mucosa against hypertonic sodium chloride by 16,16-dimethyl prostaglandin E2 or sodium thiosulfate in the rat: evidence for decreased mucosal penetration of damaging agent. Digestive Diseases & Sciences 1989; 34: 1865-1872.
- 4. Szabo S. Mechanisms of gastric mucosal injury and protection. Journal of Clinical Gastroenterology 1991; **13:** S21–S34.
- 5. Beltinger I, McKaig BC, Makh S et al. Human colonic subepithelial myofibroblasts modulate transepithelial resistance and secretory response. American Journal of Physiology-Cell Physiology 1999; 277: C271-C279.
- 6. Rainsford KD. Actions of nonsteroidal anti-inflammatory drugs on the functions of lymphocytes. Agents & Actions 1988; 24 (supplements): 54-65.
- 7. Newberry RD, Stenson WF & Lorenz RG. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nature Medicine 1999; 5:
- 8. Morteau O. COX-2 promoting tolerance. Nature Medicine 1999; 5: 867-868.
- 9. Xie W, Chipman IG, Robertson DL et al. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proceedings of the National Academy of Sciences of the USA 1991: 88: 2692-2696.
 - 10. Fu JY, Masferrer JL, Seibert K et al. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. Journal of Biological Chemistry 1990; 265: 16737-16740.
 - 11. Kujubu DA, Fletcher BS, Varnum BC et al. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase cyclooxygenase homologue. Journal of Biological Chemistry 1991; 266: 12866-12872.
 - 12. Needleman P & Manning PT. Interactions between the inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) pathways: implications for therapeutic intervention in osteoarthritis. Osteoarthritis & Cartilage 1999; 7: 367-370.
 - 13. Hawkey CJ. COX-2 inhibitors. Lancet 1999; 353: 307-314.
 - 14. Scott LJ & Lamb HM. Rofecoxib. Drugs 1999; 58: 499-505.

- 15. Jackson LM & Hawkey CJ. COX-2 selective nonsteroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 2000; 59: 1207-1216.
- 16. Clemett D & Goa KL. Celecoxib: a review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs 2000; 59: 957-980.
- 17. Picot D, Loll PJ & Garavito RM. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-I. Nature 1994; 367: 243-249.
- 18. Gierse JK, McDonald JJ, Hauser SD et al. A single amino acid difference between cyclooxygenase-I (COX-I) and -2(COX-2) reverses the selectivity of COX-2 specific inhibitors. Journal of Biological Chemistry 1996; **271**: 15810–15814.
- 19. Marnett Ll. Structure, function and inhibition of cyclo-oxygenases. Ernst Schering Research Foundation Workshop 2000; 31: 65-83.
- 20. Lanzo CA, Beechem M, Talley & Marnett LJ. Investigation of the binding of isoform-selective inhibitors to prostaglandin endoperoxide synthases using fluorescence spectroscopy. Biochemistry 1998; **37:** 217-226.
- 21. Lanzo CA, Sutin J, Rowlinson S et al. Fluorescence quenching analysis of the association and dissociation of a diarylheterocycle to cyclooxygenase-I and cyclooxygenase-2: dynamic basis of cyclooxygenase-2 selectivity. Biochemistry 2000; 39: 6228-6234.
- 22. Riendeau D, Charleson S, Cromlish W et al. Comparison of the cyclooxygenase-I inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Canadian Journal of Physiology & Pharmacology 1997; 75: 1088-1095.
- 23. Lanza FL. Gastrointestinal toxicity of newer NSAIDs. American Journal of Gastroenterology 1993; 88: 1318-1323.
- 24. van Ryn | & Pairet M. Clinical experience with cyclooxygenase-2 inhibitors. Inflammation Research 1999; **48:** 247-254.
- 25. Bjarnason I. Forthcoming non-steroidal anti-inflammatory drugs: are they really devoid of side effects? Italian. Journal of Gastroenterology & Hepatology 1999; 31: S27-S36.
- 26. Bjarnason I & Thjodleifsson B. Gastrointestinal toxicity of non-steroidal anti-inflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract. Rheumatology 1999; **31:** 24-32.
- 27. Brooks P, Emery P, Evans |F et al. Interpreting the clinical significance of the differential inhibition of cyclooxygenase-I and cyclooxygenase-2. Rheumatology 1999; 31: 779-788.
- 28. Patrignani P, Panara MR, Greco A et al. Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. Journal of Pharmacology & Experimental Therapeutics 1994; **271**: 1705–1712.
- * 29. Warner TD, Giuliano F, Vojnovic L et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis [published erratum appears in volume 96, page 9666]. Proceedings of the National Academy of Sciences of the USA 1999; 96: 7563-7568.
 - 30. Dallob A, Depre M, DeLepeleire I et al. MK-0663: a highly selective inhibitor of COX-2 in humans. Annals of the Rheumatic Diseases 2000; 59: A131.
- 31. Wight N, Gottesdiener K, Garlick NM et al. Rofecoxib, a COX-2 inhibitor, does not inhibit human gastric mucosal prostaglandin production. Gastroenterology 2001; 120(4): 867-873.
- 32. Cryer B, Gottesdiener K, Gertz BJ et al. In vivo effects of rofecoxib, a new cyclooxygenase (COX)-2 inhibitor, on gastric mucosal prostaglandin (PG) and serum thromboxane B2 (TBX2) synthesis in healthy humans. Gastroenterology 1999; 116: A141.
- 33. Lanza FL, Rack MF, Simon TJ et al. Specific inhibition of cyclooxygenase-2 with MK-0966 is associated with less gastroduodenal damage than either aspirin or ibuprofen. Alimentary Pharmacology & Therapeutics 1999; **13:** 761–767.
- 34. Sigthorsson G, Crane R, Simon T et al. COX-2 inhibition with rofecoxib does not increase intestinal permeability in healthy subjects: a double blind crossover study comparing rofecoxib with placebo and indomethacin. Gut 2000; 47: 527-532.
- 35. Hunt RH, Bowen B, Mortensen ER et al. A randomized trial measuring fecal blood loss after treatment with rofecoxib, ibuprofen, or placebo in healthy subjects. American Journal of Medicine 2000; 109:
- 36. Cannon GW, Caldwell JR, Holt P et al. Rofecoxib, a specific inhibitor of cyclooxygenase 2, with clinical efficacy comparable with that of diclofenac sodium: results of a one-year, randomized, clinical trial in patients with osteoarthritis of the knee and hip. Rofecoxib Phase III Protocol 035 Study Group. Arthritis & Rheumatism 2000; 43: 978-987.
- 37. Day R, Morrison B, Luza A et al. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Archives of Internal Medicine 2000; 160: 1781-1787.

- 38. Schnitzer TJ, Truitt K, Fleischmann R et al. The safety profile, tolerability, and effective dose range of rofecoxib in the treatment of rheumatoid arthritis. Phase II Rofecoxib Rheumatoid Arthritis Study Group. Clinical Therapeutics 1999; 21: 1688–1702.
- 39. Laine L, Harper S, Simon T et al. A randomized trial comparing the effect of rofecoxib, a cyclooxygenase 2-specific inhibitor, with that of ibuprofen on the gastroduodenal mucosa of patients with osteoarthritis. Rofecoxib Osteoarthritis Endoscopy Study Group. Gastroenterology 1999; 117: 776-783.
- * 40. Hawkey C, Laine L, Simon T et al. Comparison of the effect of rofecoxib (a cyclooxygenase 2 inhibitor), ibuprofen, and placebo on the gastroduodenal mucosa of patients with osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis & Rheumatism 2000; 43: 370-377.
 - 41. Bardhan KD, Bjarnason I, Scott DL et al. The prevention and healing of acute non-steroidal antiinflammatory drug-associated gastroduodenal mucosal damage by misoprostol. British Journal of Rheumatology 1993; 32: 990-995.
- 42. Bombardier C, Laine L, Reicin A et al. A double-blind comparison of rofecoxib and naproxen on the incidence of clinically important upper gastrointestinal events. The VIGOR trial. New England Journal of Medicine 2000; 343: 1520-1528.
 - 43. Laine L. Stratifying the risk of clinical upper GI events in NSAID users: results from a double-blind outcomes study. Gastroenterology. 2001 (in press).
- * 44. Simon LS, Weaver AL, Graham DY et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. Journal of the American Medical Association 1999; 282: 1921-1928.
 - 45. Emery P, Zeidler H, Kvien TK et al. Celecoxib versus diclofenac in long-term management of rheumatoid arthritis: randomised double-blind comparison. Lancet 1999: 354: 2106-2111.
 - 46. Bensen WG, Fiechtner JJ, McMillen JI et al. Treatment of osteoarthritis with celecoxib, a cyclooxygenase-2 inhibitor: a randomized controlled trial. Mayo Clinic Proceedings 1999; 74: 1095-1105.
 - 47. Goldenberg MM. Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis. Clinical Therapeutics 1999; 21: 1497-1513.
 - 48. Simon LS, Weaver AL, Graham DY et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. Journal of the American Medical Association 1999; 282: 1921-1928.
- * 49. Silverstein FE, Faich G, Goldstein |L et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal antiinflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. Journal of the American Medical Association 2000: **284:** 1247-1255.
 - 50. Taha AS, McLaughlin S, Holland PJ et al. Effect on gastric and duodenal mucosal prostaglandins of repeated intake of therapeutic doses of naproxen and etodolac in rheumatoid arthritis. Annals of the Rheumatic Diseases 1990; 49: 354-358.
 - 51. Laine L, Cominelli F, Sloane R et al. Interaction of NSAIDs and Helicobacter pylori, on gastrointestinal injury and prostaglandin production: a controlled double-blind trial. Alimentary Pharmacology & Therapeutics 1995; 9: 127-135.
 - 52. Laine L. The long-term management of patients with bleeding ulcers: Helicobacter pylori eradication instead of maintenance antisecretory therapy. Gastrointestinal Endoscopy 1995; 41: 77-79.
 - 53. Taha AS, McLaughlin S, Sturrock RD & Russell RI. Evaluation of the efficacy and comparative effects on gastric and duodenal mucosa of etodolac and naproxen in patients with rheumatoid arthritis using endoscopy. British Journal of Rheumatology 1989; 28: 329-332.
 - 54. Lightfoot R. Comparison of the efficacy and safety of etodolac and piroxicam in patients with rheumatoid arthritis. Etodolac Study 326 Rheumatoid Arthritis Investigators Group. Journal of Rheumatology 1997; 47 (supplement): 10–16.
 - 55. Neustadt DH. Double blind evaluation of the long-term effects of etodolac versus ibuprofen in patients with rheumatoid arthritis. Journal of Rheumatology 1997; 47 (supplement): 17-22.
 - 56. Rogind H. Comparison of etodolac and piroxicam in patients with osteoarthritis of the hip or knee: a prospective, randomised, double-blind, controlled multicentre study. Clinical Drug Investigation 1997; 13: 66-75.
 - 57. Simon LS, Zhao SZ, Arguelles LM et al. Economic and gastrointestinal safety comparisons of etodolac, nabumetone, and oxaprozin from insurance claims data from patients with arthritis. Clinical Therapeutics 1998; 20: 1218-1235.
 - 58. Henry D, Lim LL, Garcia Rodriguez LA et al. Variability in risk of gastrointestinal complications with individual non-steroidal anti-inflammatory drugs: results of a collaborative meta-analysis [see comments]. British Medical Journal 1996; 312: 1563-1566.
 - 59. Garcia Rodriguez LA. Variability in risk of gastrointestinal complications with different nonsteroidal anti-inflammatory drugs. American Journal of Medicine 1998; 104: 415-42S.

- Garcia-Nieto R, Perez C, Checa A & Gago F. Molecular model of the interaction between nimesulide and human cyclooxygenase-2. Rheumatology 1999; 38: 14–18.
- Patrignani P, Panara MR, Sciulli MG et al. Differential inhibition of human prostaglandin endoperoxide synthase-I and -2 by nonsteroidal anti-inflammatory drugs. *Journal of Physiology & Pharmacology* 1997; 48: 623–631.
- 62. Warner TD, Giuliano F, Vojnovic L et al. Nonsteroid drug selectivities for cyclo-oxygenase-I rather than cyclo- oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proceedings of the National Academy of Sciences of the USA 1999; 96: 7563–7568.
- Giuliano F & Warner TD. Ex vivo assay to determine the cyclooxygenase selectivity of non-steroidal anti-inflammatory drugs. British Journal of Pharmacology 1999; 126: 1824–1830.
- 64. Tavares IA, Bishai PM & Bennett A. Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzneimittel-Forschung 19952; 45: 1093–1095.
- Shah AA, Murray FE & Fitzgerald DJ. The in vivo assessment of nimesulide cyclooxygenase-2 selectivity. Rheumatology 1999; 38: 19–23.
- 66. Marini U & Spotti D. Gastric tolerability of nimesulide: A double-blind comparison of 2 oral dosage regimens and placebo. *Drugs* 1993; **46:** 249–252.
- 67. Hernandez-Diaz S & Rodriguez LA. Association between nonsteroidal anti-inflammatory drugs and upper gastrointestinal tract bleeding/perforation: an overview of epidemiologic studies published in the 1990s. Archives of Internal Medicine 2000; 160: 2093–2099.
- 68. Panara MR, Padovano R, Sciulli MG et al. Effects of nimesulide on constitutive and inducible prostanoid biosynthesis in human beings. Clinical Pharmacology & Therapeutics 1998; 63: 672–681.
- 69. van Hecken A, Schwartz JI, Depre M et al. Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. *Pharmacokinetics and Pharmacodynamics* 2000; **40:** 1109–1120.
- 70. Dallob A, De Lepeleire I, van Hecken A et al. Ex vivo assays demonstrate potency and selectivity of the COX-2 inhibitor DFP after single dose administration. *Inflammation Research* 1999; **48:** \$130–\$131.
- Lipscomb GR, Wallis N, Armstrong G & Rees WDW. Gastrointestinal tolerability of meloxicam and piroxicam: a double-blind placebo-controlled study. British Journal of Clinical Pharmacology 1998; 46: 133–137.
- 72. Patoia L, Santucci L, Furno P et al. A 4- week, double-blind, parallel-group study to compare the gastrointestinal effects of meloxicam 7.5 mg, meloxicam 15 mg, piroxicam 20 mg and placebo by means of faecal blood loss, endoscopy and symptom evaluation in healthy volunteers. *British Journal of Rheumatology* 1996; **35:** 61–67.
- Lipscomb GR, Wallis N, Armstrong G & Rees WD. Gastrointestinal tolerability of meloxicam and piroxicam: a double-blind placebo-controlled study. British Journal of Clinical Pharmacology 1998; 46: 133–137.
- 74. Distel M, Mueller C, Bluhmki E & Fries J. Safety of meloxicam: a global analysis of clinical trials. *British Journal of Rheumatology* 1996; **35**: 68–77.
- 75. Goei The HS, Lund B, Distel M & Bluhmki E. A double-blind, randomized trial to compare meloxicam 15 mg with diclofenac 100 mg in the treatment of osteoarthritis of the knee. *Osteoarthritis & Cartilage* 1997; **5:** 283–288.
- * 76. Hawkey C, Kahan A, Steinbruck K et al. Gastrointestinal tolerability of meloxicam compared to diclofenac in osteoarthritis patients. International MELISSA Study Group. Meloxicam Large-scale International Study Safety Assessment. British Journal of Rheumatology 1998; 37: 937–945 [published erratum appears in British Journal of Rheumatology 1998; 37:1142].
 - 77. Hosie J, Distel M & Bluhmki E. Meloxicam in osteoarthritis: a 6-month, double-blind comparison with diclofenac sodium. *British Journal of Rheumatology* 1996; **35:** 39–43.
 - Linden B, Distel M & Bluhmki E. A double-blind study to compare the efficacy and safety of meloxicam 15 mg with piroxicam 20 mg in patients with osteoarthritis of the hip. *British Journal of Rheumatology* 1996; 35: 35–38.
 - Dequeker J, Hawkey C, Kahan A et al. Improvement in gastrointestinal tolerability of the selective cyclooxygenase (COX)-2 inhibitor, meloxicam, compared with piroxicam: results of the safety and efficacy large-scale evaluation of COX-inhibiting therapies (SELECT) trial in osteoarthritis. British Journal of Rheumatology 1998; 37: 946–951.
 - 80. Wojtulewski JA, Schattenkirchner M, Barcelo P et al. A six-month double-blind trial to compare the efficacy and safety of meloxicam 7.5 mg daily and naproxen 750mg daily in patients with rheumatoid arthritis. *British Journal of Rheumatology* 1996; **35:** 22–28.
 - 81. Schoenfeld P. Gastrointestinal safety profile of meloxicam: a meta-analysis and systematic review of randomized controlled trials. *American Journal of Medicine* 1999; 107: 48S–54S.
 - 82. Degner F, Sigmund R & Zeidler H. Efficacy and tolerability of meloxicam in an observational, controlled cohort study in patients with rheumatic disease. Clinical Therapeutics 2000; 22: 400–410.

- 83. Bradley JD, Brandt KD, Katz BP et al. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. New England Journal of Medicine 1991; 325: 87-91.
- 84. Brandt KD & Bradley JD. Simple analgesics versus NSAIDs for osteoarthritis. Lancet 1993; 341: 770-771.
- 85. Eccles M, Clarke J, Livingstone M et al. North of England evidence based guidelines development project: guideline for the primary care management of dementia. British Medical Journal 1998; 317: 802-808.
- 86. Geba GP, Weaver AL, Schnitzer TJ et al. A clinical trial comparing rofecoxib to celecoxib and acetaminophen in the treatment of osteoarthritis (OA): early efficacy results. Annals of the Rheumatic Diseases 2000: 59: A133.
- 87. Harris RC, McKanna JA, Akai Y et al. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. Journal of Clinical Investigation 1994; 94: 2504-2510.
- 88. Harris RC, Wang JL, Cheng HF et al. Prostaglandins in macula densa function. Kidney International 1998; 67 (Supplement): S49-S52.
- 89. Rossat |, Maillard M, Nussberger | et al. Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects. Clinical Pharmacology & Therapeutics 1999; 66: 76-84.
- 90. Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. American Journal of Medicine 1999; 106: 13S-24S.
- 91. Croft KD, McGiff JC, Sanchez-Mendoza A & Carroll MA. Angiotensin II releases 20-HETE from rat renal microvessels. American Journal of Physiology Renal Fluid & Electrolyte Physiology 2000; 279: F544-F551.
- 92. McGiff |C & Quilley |. 20-HETE and the kidney: resolution of old problems and new beginnings. American Journal of Physiology 1999; 277: R607-R623.
- 93. Ferreri NR, An SJ & McGiff JC. Cyclooxygenase-2 expression and function in the medullary thick ascending limb. American Journal of Physiology 1999; 277: F360-F368.
- 94. Brater DC, McCarthy DM & Fries JF. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. American Journal of Medicine 1999; 107: 65S-71S.
- 95. Zhang MZ, Harris RC & McKanna A. Regulation of cyclooxygenase-2 (COX-2) in rat renal cortex by adrenal glucocorticoids and mineralocorticoids. Proceedings of the National Academy of Sciences of the USA 1999; **96:** 15280–15285.
- 96. Wang JL, Cheng HF & Harris RC. Cyclooxygenase-2 inhibition decreases renin content and lowers blood pressure in a model of renovascular hypertension. Hypertension 1999; 34: 96-101.
- 97. Wolf K, Castrop H, Hartner A et al. Inhibition of the renin-angiotensin system upregulates cyclooxygenase-2 expression in the macula densa. Hypertension 1999; 34: 503-507.
- 98. Swan SK, Rudy DW, Lasseter KC et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Annals of Internal Medicine 2000; 133: 1-9.
- * 99. Catella-Lawson F, McAdam B, Morrison BW et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. Journal of Pharmacology & Experimental Therapeutics 1999; 289: 735-741.
- 100. Whelton A, Schulman G, Wallemark C et al. Effects of celecoxib and naproxen on renal function in the elderly. Archives of Internal Medicine 2000; 160: 1465-1470.
- 101. McAdam BF, Catella-Lawson F, Mardini IA et al. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proceedings of the National Academy of Sciences of the USA 1999; 96: 272-277 [published erratum appears in volume 96, page 5890].
- 102. Daniels B, Krupa D, Ehrich E et al. Clinical response of OA patients who use acetaminophen when randomised to rofecoxib or ibuprofen. Arthritis & Rheumatism 1999; 42 (supplement): \$143.
- 103. Langman MJ, Jensen DM, Watson DJ et al. Adverse upper gastrointestinal effects of rofecoxib compared with NSAIDs. Journal of the American Medical Association 1999; 282: 1929-1933.
- 104. Leese PT, Hubbard RC, Karim A et al. Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: a randomized, controlled trial. Journal of Clinical Pharmacology 2000; **40:** 124-132.
- 105. Schwartz JIVA, DeLepeleire I, Depre M et al. Comparative inhibitory activity of rofecoxib (MK-0966, VIOXX), Meloxicam, Diclofenac, Ibuprofen and Naproxen on Cox-2 vs Cox-1 in healthy female volunteers. Annals of the Rheumatic Diseases 1999; 206 (supplement 1): A206.
- 106. Scott LJ & Lamb HM. Rofecoxib. Drugs 1999; 58: 499-505.
- 107. Jackson LM & Hawkey CJ. Cox-2 selective nonsteroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 2000; 59: 1207-1216.
- 108. Website http://www.fda.gov/cder/foi/label/1998/20998lbl.pdf. 1999.
- 109. Fletcher D, Negre I, Barbin C et al. Postoperative analgesia with iv propacetamol and ketoprofen combination after disc surgery. Canadian Journal of Anaesthesia 1997; 44: 479-485.

- 110. Ehrich EW, Dallob A, De Lepeleire I et al. Characterization of rofecoxib as a cycloxygenase-2 isoform inhibitor and demonstration of analgesia in the dental pain model. Clinical Pharmacology & Therapeutics 1999; 65: 336–347.
- 111. Morrison BW, Christensen S, Yuan W et al. Analgesic efficacy of the cyclooxygenase-2-specific inhibitor rofecoxib in post-dental surgery pain: a randomized, controlled trial. *Clinical Therapeutics* 1999; 21: 943–953.
- 112. Malmstrom K, Daniels S, Kotey P et al. Comparison of rofecoxib and celecoxib, two cyclooxygenase-2 inhibitors, in postoperative dental pain: A randomized, placebo-and active-comparator-controlled clinical trial. Clinical Therapeutics 1999; 21: 1653–1663.
- 113. Patrignani P, Panara MR, Sciulli MG et al. Differential inhibition of human prostaglandin endoperoxide synthase-I and -2 by nonsteroidal anti-inflammatory drugs. *Journal of Physiology & Pharmacology* 1997; 48: 623–631.
- 114. Hawkey C, Harper S, Quan H et al. Effect of rofecoxib on endoscopic ulcers in osteoarthritis patients: analysis of potential risk factors. *Annals of the Rheumatic Diseases* 2000; **59 (supplement):** 290.