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Purpose of review

The review highlights recent findings regarding the functions of mitochondria in

adipocytes, providing an understanding of their central roles in regulating substrate

metabolism, energy expenditure, disposal of reactive oxygen species (ROS), and in the

pathophysiology of obesity and insulin resistance, as well as roles in the mechanisms

that affect adipogenesis and mature adipocyte function.

Recent findings

Nutrient excess leads to mitochondrial dysfunction, which in turn leads to obesity-

related pathologies, in part due to the harmful effects of ROS. The recent recognition of

‘ectopic’ brown adipose in humans suggests that this tissue may play an

underappreciated role in the control of energy expenditure. Transcription factors, PGC-

1a and PRDM16, which regulate brown adipogenesis, and members of the TGF-b

superfamily that modulate this process may be important new targets for antiobesity

drugs.

Summary

Mitochondria play central roles in ATP production, energy expenditure, and disposal of

ROS. Excessive energy substrates lead to mitochondrial dysfunction with

consequential effects on lipid and glucose metabolism. Adipocytes help to maintain the

appropriate balance between energy storage and expenditure and maintaining this

balance requires normal mitochondrial function. Many adipokines, including members of

the TGF-b superfamily, and transcriptional coactivators, PGC-1a and PRDM16, are

important regulators of this process.
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Introduction

Mitochondrial dysfunction contributes to the pathogen-

esis of metabolic disorders. Affected tissues include those

that participate in nutrient metabolism, including adi-

pose, liver and skeletal muscle. Abnormal mitochondrial

function results in lipid accumulation and insulin resist-

ance, as cells require a balance between mitochondrial

ATP synthesis through oxidative phosphorylation

(OXPHOS), and dissipation of the proton gradient to

minimize damage from reactive oxygen species (ROS).

Growth and transcription factors that regulate mitochon-

drial gene expression contribute to the pathophysiology

of obesity, insulin resistance and type-2 diabetes (T2D).

Herein, we focus on factors linking mitochondrial dys-

function to obesity, with an emphasis on adipocytes and

energy expenditure.
Roles of mitochondria in adipocyte lipid
metabolism
Mitochondrial biogenesis and activity increase dramatic-

ally during adipocyte differentiation, suggesting an
opyright © Lippincott Williams & Wilkins. Unautho
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important supportive role for this organelle [1]. Moreover,

mitochondrial dysfunction in mature adipocytes has been

linked to defects in fatty acid oxidation (FAO) [2�],

secretion of adipokines [3], and dysregulation of glucose

homeostasis [4]. Reduction in the oxidative capacity of

brown adipocytes results in impaired thermogenesis, and

has been linked to diet-induced obesity [5��].

Several mitochondrial enzymes are essential in lipid

metabolism, as mitochondria are the major site of

FAO. Classically, negative energy balance results in

enhanced lipolysis in white adipose tissues (WAT), pro-

viding nonesterified fatty acids (NEFA) as a substrate for

FAO in liver and skeletal muscle, with associated insulin

sensitization. In contrast, extended periods of nutrient

excess result in NEFA accumulation, mitochondrial dys-

function and insulin resistance [6�]. Consistent with a

mitochondrial role, primary mitochondrial disorders can

also affect body fat storage leading to multiple symmetri-

cal lipomatosis [7]. Inhibitors of mitochondrial respiration

increase triglyceride accumulation, and reduce FAO and

glucose uptake in 3T3L1 preadipocytes [8], whereas mild

mitochondrial uncoupling decreases the expression of
rized reproduction of this article is prohibited.
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transcription factors involved in adipocyte differentiation

with subsequent reduction in triglyceride accumulation

[9�], suggesting that different levels of mitochondrial

activity can have different effects on adipocyte lipid

metabolism.
Uncoupling proteins
Mitochondrial respiration can be uncoupled by the con-

trolled transfer of protons across the inner mitochondrial

membrane, thereby dissipating the proton gradient to

minimize the deleterious effects of ROS. The family of

inner mitochondrial membrane uncoupling proteins

(UCPs) plays important roles in thermogenesis in BAT

and in regulating the disposal of mitochondrial ROS in

other tissues [10]. UCP1 uncouples mitochondrial respir-

ation from ATP production by causing protons to leak

across the inner mitochondrial membrane, enabling

energy dissipation in the form of heat, a process that is

enhanced by NEFA and inhibited by purine nucleotides

[10]. ROS that are normally generated by OXPHOS

further activate UCPs, thereby dissipating the proton

gradient and facilitating ROS disposal [11]. In this

fashion, the deleterious effects of ROS can be delayed

or even reversed.
Caloric intake and reactive oxygen species:
contributors to mitochondrial dysfunction
Mitochondrial oxidative dysfunction correlates with insu-

lin resistance in skeletal muscle of obese and diabetic

individuals [12�,13�]. This dysfunction correlates with

reductions in mitochondrial numbers and size [14], and

enzymatic oxidative capacity [15]. Reduced expression of

OXPHOS genes and reduced oxygen consumption have

also been observed in obese individuals [16,17]. Adipo-

cytes respond to metabolic challenges by altering the

number, morphology and/or distribution of mitochondria

within the cell, and by changing the metabolite, enzyme,

and/or mitochondrial DNA (mtDNA) content.

Excessive caloric intake, increasing the mitochondrial

substrate load, or mitochondrial dysfunction that pre-

cludes effective dissipation of the proton gradient can

increase ROS production, causing cell damage, increased

mutation rates of mtDNA, and apoptosis. High-fat diet

(HFD) and hyperglycemia increase ROS production in

mouse adipocytes [18,19], and oxidative stress is

increased in obese individuals and in adipose from

genetically obese mice, causing abnormal adipokine pro-

duction [20]. Addition of glucose or NEFAs to mature

3T3L1 adipocytes reduces mitochondrial biogenesis and

gene expression, and increases ROS, causing insulin

resistance [2�]. Similarly, TNF-a-mediated ROS

accumulation leads to insulin resistance in 3T3L1 pre-

adipocytes [21]. ROS reduce oxygen consumption in
opyright © Lippincott Williams & Wilkins. Unauth
adipocytes, and block FAO, resulting in lipid accumu-

lation [22�]. Finally, insulin resistance is mitigated by

mitochondrial antioxidants or overexpression of mito-

chondrial scavengers [23�]. Therefore, excessive energy

substrates result in increased ROS production, which in

turn has significant consequences on mitochondrial func-

tion and energy substrate metabolism.
Mitochondria: roles in white and brown
adipose tissues
In mammals, there are two general types of adipose tissue.

Brown adipose tissue (BAT) dissipates energy through

thermogenesis, whereas white adipose tissue (WAT)

specializes in energy storage. Adipocytes are derived from

a multipotent mesenchymal stem cell (MSC) residing in

the stromal vascular fraction (SVF) of adipose tissues [24].

However, BAT and WAT adipocytes arise from different

precursor cells. The differences in BAT and WAT func-

tions in energy metabolism are due in part to differences in

mitochondrial physiology.
White adipose tissues
In situations of energy demand, WAT releases NEFA into

circulation as an energy substrate. During periods of

nutrient excess, WAT lipogenic enzymes use energy sub-

strates to produce triglyceride for storage. Although not

typically viewed as a thermogenic tissue, mitochondrial

biogenesis and UCP1 expression in WAT increases after

adrenergic stimulation due to cold exposure or by treat-

ment with b3-adrenoreceptor (ADBR3) agonists [25�].

These increases correlate with a reduction of diet-induced

obesity [26]. Moreover, Adbr3 knockout mice have dimin-

ished BAT in white fat depots, indicating the importance

of sympathetic input in this process [27]. Similar to

rodents, ADBR3 has been detected in adult human

WAT [28], and adrenergic stimulation can increase

UCP1 expression [29]. Thus, the number of brown adi-

pocytes within WAT varies, influenced by environmental

factors.
Brown adipose tissues
Adipocytes within BAT depots share a common Myf5-

positive precursor with myocytes [30,31]. In contrast,

brown adipocytes residing within WAT depots are derived

from a different precursor (Myf5-negative) and increase in

number after adrenergic stimulation. These resident

brown adipocytes arise through either differentiation of

brown preadipocytes or through transdifferentiation of

white adipocytes or their precursors (for excellent review

see [32�]). Brown adipocytes are thermogenic cells that

play an important role in energy balance in rodents and

humans. BAT thermogenesis is dependent on adrenergic

stimulation of lipolysis and subsequent UCP1-dependent

degradation of NEFA [33].
orized reproduction of this article is prohibited.
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BAT and muscle mitochondria have similar metabolic

profiles [34��]. The high oxidative capacity of both is due

to their high mitochondrial density, expression of FAO

enzymes and respiratory chain components. However,

BAT displays exclusive expression of UCP1. Under

thermoneutral conditions UCP1 ablation in mice results

in obesity and abolishes diet-induced thermogenesis

[5��]. Overexpression of UCP1 in WAT reduces weight

gain in obesity-prone mice due in part to increased

energy expenditure and decreased fatty acid synthesis

[35]. Recently, ectopic BAT has been found in mouse

skeletal muscle and UCP1 mRNA levels were higher in

this BAT in obesity-resistant mice than in obesity-prone

mice [36]. Thus, although the number of brown adipo-

cytes varies among different white fat depots and skeletal

muscle, enhanced capacity for BAT recruitment and

UCP1 expression may influence the susceptibility to

obesity and indicates substantial heterogeneity and

plasticity of BAT development. Human BAT is present

in several areas, and its activity is stimulated by cold

exposure, and inhibited by drugs that block b-adrenergic

signaling [37]. The amount and activity of human BAT is

inversely correlated with age, glucose levels, BMI and

percentage body fat [38��,39�–41�]. Thus, these cells

may be important contributors to thermogenesis in

healthy adults. Furthermore, BAT progenitors can also

be found in human skeletal muscle and these progenitors

can differentiate into mature-brown adipocytes [42].

Thus, BAT may also play an important role in the

susceptibility to obesity and in regulating energy expen-

diture in humans, processes that are indelibly linked to

mitochondrial function.
Mitochondria and adipocyte transcription
factors
There is great interest in understanding the roles of

mitochondria in the differentiation of adipocytes, as affect-

ing the brown versus white adipocyte fate decision has

enormous implications for the treatment of human obesity.

Several transcription factors participate in adipogenesis,

and are summarized in Table 1 [43–48,49��,50–52,53�,

54–74]. Of particular interest are the PPAR g coactivator

family (PGC) and PRD1-BF-1-RIZ1 homologous domain

containing protein 16 (PRDM16), as they play major roles

in mitochondrial biogenesis and function and in defining

the characteristics of brown adipocytes.
Peroxisome proliferator activated
receptor-gamma coactivator family
The transcriptional coactivators PGC-1a and PGC-1b

play important roles in the expression of genes involved

in mitochondrial biogenesis, fatty acid metabolism and

lipid accumulation. Ablation of PGC-1a and PGC-1b in

BAT preadipocytes impairs mitochondrial gene expres-
opyright © Lippincott Williams & Wilkins. Unautho
sion, density and respiration [43]. PGC-1a is reduced in

adipose tissues of obese individuals [44], and in geneti-

cally induced and diet-induced obese mice [45]. Thus,

reduced PGC1 expression correlates with the impaired

mitochondrial function and increased lipid accumulation

that is characteristic of human metabolic disorders.
PRD1-BF-1-RIZ1 homologous domain
containing protein 16
PRDM16 is selectively expressed in brown adipocytes

[46] and is a transcriptional coactivator of PGC-1a and

PGC-1b, increasing the expression of genes important for

mitochondrial biogenesis, uncoupling, and OXPHOS

[46,47]. Transgenic overexpression of PRDM16 in

adipose increases mitochondrial gene expression in

clusters of BAT cells within white adipose [46]. Also,

PRDM16 interacts with C-terminal binding proteins,

Ct-BP1 and Ct-BP2, to repress white adipocyte genes

[47], and reducing PRDM16 in brown adipocytes blocks

mitochondrial gene expression and increases myogenic

markers [48]. PRDM16 binding to C/EBPb activates the

BAT developmental program [49��]. Thus, PRDM16 is

an important early regulator of brown adipogenesis,

increasing mitochondrial biogenesis, oxygen consump-

tion and uncoupling.
Adipokines and growth factors
White adipose also has a prominent endocrine role,

producing adipokines and hormones that regulate energy

homeostasis, some affecting mitochondrial function (for

excellent review see [75]).
Adiponectin
Adiponectin affects glucose and lipid metabolism, food

intake and insulin sensitivity and stimulates FAO and

glucose uptake in skeletal muscle cells [76]. Adiponectin

increases PGC-1a expression, mitochondrial biogenesis,

and FAO in myocytes [77��], and TZD treatment

increases adiponectin expression and enhances mito-

chondrial function in human skeletal muscle [78�]. Thus,

adiponectin plays an important role in processes that

regulate mitochondrial energy expenditure.
TGF-b superfamily
The BMP subgroup of the TGF-b superfamily plays

important roles in adipocyte differentiation. Although

BMP2, BMP4 and BMP7 all participate [79–81], only

BMP7 triggers the commitment to the brown adipocyte

lineage [82]. BMP7 increases mitochondrial density

and the expression of mitochondrial biogenesis genes

through activation of p38 MAPK and PGC-1a [82]. More-

over, Bmp7-null mice have a reduction in BAT, and
rized reproduction of this article is prohibited.
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Table 1 Adipocyte transcription factors: effects on mitochondria, adiposity and insulin response

Gene Adipocyte effects Mitochondrial relationships Adipose and insulin response Reference

CREB Stimulates adipogenesis
(3T3-L1 cells)

Activated by mitochondrial
dysfunction

Activated in obesity [50–52,53�]

Triggers TG accumulation
(3T3-L1 cells)

Induces IR

Increases mitochondrial
biogenesis and gene expression

C/EBPa Induces adipogenesis
(3T3-L1)

Involved in BAT-WAT
differentiation in vivo

Expression increases mitochondrial
biogenesis and gene expression
in BAT in a PPARg-dependent
manner

C/EBPa deficiency induces IR [54–58]

C/EBPb Increases adipogenesis
(3T3-L1)

Involved in BAT–WAT
differentiation (in vivo)

Interacts with PRDM16
in BAT

Expression increases mitochondrial
biogenesis and gene expression
in WAT

Lack of C/EBPb protects against
diet-induced obesity

[49��,59–62]

C/EBPd Involved in BAT–WAT
differentiation in vivo

Expression increases mitochondrial
biogenesis and gene expression

SNPs associated with altered
lipid metabolism

[59,63]

PPARa Dispensable for
adipogenesis
(in vitro and in vivo)

Expression increases mitochondrial
gene expression in a
PGC-1a-dependent manner

PPARa deficiency is associated
with late onset and diet-induced
obesity

[64,65]

PPARg Increases adipogenesis
(3T3-L1)

Expression increases mitochondrial
biogenesis and gene expression

Sequence variants are associated
with obesity and IR

[1,46,66–68]

Involved in BAT-WAT
differentiation in vivo

Promotes NEFA uptake and TG
accumulation in WAT

Interacts with PRDM16 in BAT
PPARd Co-repressor of PPARa

and PPARg

Expression increases mitochondrial
biogenesis and gene expression

Lack of PPARd increases
susceptibility to obesity

[69–71]

Involved in BAT–WAT
differentiation in vivo

Overexpression in adipose tissue
reduces diet-induced obesity
by stimulating thermogenesis

PGC-1a Involved in BAT–WAT
differentiation.

Expression increases mitochondrial
biogenesis and gene expression

PGC1a deficiency increases
body fat

[4,44,45,72]

Interacts with PRDM16 in BAT Obesity reduces PGC-1a expression
PGC-1b Involved in BAT–WAT

differentiation
Expression increases mitochondrial

biogenesis and gene expression
Hypomorphic mutation causes

mitochondrial dysfunction
[43,73,74]

Interacts with PRDM16
in BAT

Sequence variants are associated
with obesity

PRDM16 Involved in BAT–WAT
differentiation

Interacts with C/EBPd,
Ct-BP1/2, PGC-1,
and PPARg

Expression increases mitochondrial
biogenesis and gene expression
in a PGC-1-dependent manner
in BAT

NA [46–48,49��]

IR, Insulin resistance. NA, not assessed; TG, triglyceride.
overexpression of BMP7 increases BAT and energy

expenditure resulting in reduced adiposity [82]. Thus,

BMP2 and BMP4 are involved in commitment to the

adipocyte lineage, whereas BMP7 is an important regu-

lator of the brown versus white adipocyte fate decision, and

proteins that regulate BMP signaling may also have

important effects on adipocyte differentiation, and energy

expenditure.

The growth differentiation factors (GDFs) comprise

another division of the TGF-b superfamily. Gdf8 (myos-

tatin)-null mice have increased muscle mass, are resistant

to diet-induced obesity, and have improved insulin sen-

sitivity [83,84]. Systemic administration of soluble myos-

tatin type II receptor, (ActRIIB), inhibits myostatin,

reduces body fat, and improves insulin sensitivity in mice

with diet-induced obesity [85�]. Transgenic mice that

overexpress myostatin in adipose tissue or skeletal
opyright © Lippincott Williams & Wilkins. Unauth
muscle also have reduced fat mass and improved insulin

sensitivity [86,87], and systemic administration of myos-

tatin induces a cachexia-like syndrome, with reductions

in muscle and fat mass [88]. As decreased fat accumu-

lation has been observed with myostatin deficiency and

overexpression, more than one mechanism is likely to

contribute to its effects on adiposity, possibly, in part, by

modulating BMP signaling, as myostatin selectively inhi-

bits BMP7 in vitro [80].

GDF3 expression in adipocytes is affected by age and

diet [89�], and correlates with changes in body mass and

adiposity [90]. Systemic GDF3 overexpression in mice

augments normal fat accumulation under high-fat diet

(HFD) conditions, defining GDF3 as a proadipogenic

cytokine [91]. In contrast, mice lacking Gdf3 accumulate

less adipose under HFD conditions, due to increased

basal metabolic rates [89�,92]. GDF3 binds BMP4 and
orized reproduction of this article is prohibited.
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inhibits BMP signaling [93,94�]. In adipose, GDF3 uses

the activin type I receptor, Alk7, and the co-receptor

Cripto, and mice lacking Alk7 also have decreased diet-

induced fat accumulation [92]. Therefore, GDF3 may

affect adiposity by modulating BMP signaling or by

activating the Alk7 receptor.

Activins comprise another branch of the TGF-b super-

family. Activin B is expressed in human adipose and its

expression correlates directly with obesity and with cho-

lesterol and insulin levels [95]. Activin B blocks lipolysis

and increases triglyceride accumulation in 3T3L1 cells

by downregulating mitochondrial lipase expression [96�].

Mice with an activin B insertion allele at the activin A

locus, have reduced adiposity [97�], are resistant to diet-

induced obesity, have improved insulin sensitivity, and

markedly increased energy expenditure [97�] with corre-

sponding increases in mitochondrial gene expression and

increased mitochondrial oxygen consumption [97�].

Taken together, these results support an important role

for activin signaling in adipose metabolism, mitochon-

drial function and energy homeostasis.
Conclusion
Mitochondria control ATP production, energy expendi-

ture, and disposal of ROS. Excessive energy substrates

lead to mitochondrial dysfunction and abnormal lipid and

glucose metabolism. Adipocyte differentiation involves

changes in the abundance, morphology and organization

of mitochondria, and abnormalities of these processes

disrupt the balance between energy storage and expendi-

ture. Brown adipose is an important regulator of thermo-

genesis and energy balance in humans. Adiponectin and

members of the TGF-b superfamily play roles in regulat-

ing brown and white adipogenesis, as well as transcrip-

tional coactivators, PGC-1a and PRDM16. All are poten-

tial pharmacotherapeutic targets to treat metabolic

disorders such as obesity, diabetes and insulin resistance.
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