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Abstract Adaptive thermogenesis is an important com-

ponent of energy expenditure. Brown adipocytes are best

known for their ability to convert chemical energy into

heat. Beige cells are brown-like adipocytes that arise in

white adipose tissue in response to certain environmental

cues to dissipate heat and improve metabolic homeostasis.

A large body of intrinsic factors and external signals are

critical for the function of beige adipocytes. In this review,

we discuss recent advances in our understanding of neu-

ronal, hormonal, and metabolic regulation of the

development and activation of beige adipocytes, with a

focus on the regulation of beige adipocytes by other organs,

tissues, and cells. Understanding the cellular and molecular

mechanisms of inter-organ regulation of adipose tissue

browning may provide an avenue for combating obesity

and associated diseases.

Keywords Thermogenesis � beige adipocytes � browning �
inter-organ crosstalk � obesity

Introduction

A major type of thermogenic tissue in mammals is brown

adipose tissue (BAT). In mice, BAT is located constitu-

tively in the anterior subcutaneous region including the

interscapular, axillary and cervical fat [29]. Brown adipo-

cytes are characterized by multilocular lipid droplets and a

high density of iron-containing mitochondria that give the

eponymous appearance [23]. Uncoupling protein 1 (UCP1)

is a key thermogenic factor in brown adipocytes. When

activated by long-chain fatty acids, UCP1 catalyzes a

proton leak across the inner membrane, thus bypasses ATP

synthase, dissipates the electrochemical gradient, and

generates heat [6, 65]. Moreover, high vascularization of

BAT facilitates sufficient nutrition and oxygen supply as

well as efficient heat output to the whole body through

circulation (Fig. 1).

Recent studies have uncovered another type of ther-

mogenic adipocytes known as beige/brite (brown in white)

adipocytes. Beige/brite cells share morphological and

functional similarities with brown adipocytes. Beige/brite

cells express a key set of brown fat-specific genes includ-

ing UCP1 and also undergo thermogenesis via uncoupling

of oxidative phosphorylation from ATP production [133].

Although it seems interchangeable between the terms

‘‘beige’’ and ‘‘brite’’ adipocytes, the beige originally refers

to those thermogenic adipocytes isolated from subcuta-

neous WAT depots like inguinal WAT and the brite are

from their visceral counterparts such as epididymal and

mesenteric depots [90, 131]. Typically, the inguinal WAT

is more prone to browning/beiging [125], but the epididy-

mal WAT also possess bipotent adipogenic precursor cells

that can differentiate into both white and UCP1? adipo-

cytes under different conditions [70]. Hereinafter, all these
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inducible thermogenic adipocytes will be referred to as

beige adipocytes.

The recruitment of beige adipocytes, i.e., the browning

process, is potently activated by cold exposure. Chronic

cold acclimation of mice induces a substantial amount of

beige adipocytes in posterior subcutaneous, retroperitoneal

and perigonadal fat depots [125, 137]. Moreover, cold-in-

duced formation of beige adipocytes in mice can be

reversed within 5 weeks of warm adaptation, suggesting

that browning is a reversible and dynamic process [104].

Distinct from brown adipocytes, beige adipocytes have

certain unique features. A majority of brown adipocytes

arise from multipotent cells of the dermomyotome

[57, 109], whereas beige adipocytes are thought to origi-

nate from mesenchymal precursors that also give rise to

smooth muscle or smooth muscle-like cells [70, 73]. It has

been further demonstrated that RhoA signaling controls the

fate of mesenchymal stem cells (MSCs) to an adipogenic

versus smooth muscle-like lineage [76]. In addition, it is

generally believed that most cold-induced beige adipocytes

originate from de novo-differentiated adipocytes [128].

However, beige adipocytes may also derive from the

conversion of mature white adipocytes in response to cold

or b3-adrenergic stimuli [50, 70, 73, 104, 128, 131]. The

latter is corroborated by a recent study showing that most

UCP1? adipocytes in inguinal WAT upon cold exposure

stem from pre-existing mature adipocytes [69].

So far, many intrinsic transcription factors and cofactors

have been identified that robustly trigger beige adipocyte

biogenesis [35, 57, 132]. One of these regulators is

PRDM16 that is highly expressed in inguinal white fat

relative to other white fat depots in mice and plays a key

role in regulating the determination and activation of beige

adipocytes [21, 56, 89, 110]. Moreover, PRDM16-binding

partners such as PPARc coactivator 1a (PGC1a), C/EBP-
b, Euchromatic histone-lysine N-methyltransferase 1
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Fig. 1 The inter-organ regulation of adipose tissue browning. The

schematic illustrates the cellular and molecular mechanisms of inter-

organ regulation of adipose tissue browning in mice, human or both.

A number of organs, tissues and cells have been found to either act

alone or in concert to promote browning of white adipose tissue. This

simplified overview delineates the regulation of beige adipocyte

induction by central nervous system (CNS), sympathetic nervous

system (SNS), immune cells, skeletal muscle, heart, gut, liver,

adipose tissue, disease-associated, or tissue non-specific factors (for

details, see the text)
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(EHMT1), and Zfp516 serve as powerful transcriptional

activators [28, 61, 88].

Human thermogenic fat

It has long been known that classical brown adipocytes

exist in the interscapular regions of human infants and

diminish with age [1, 49]. The existence of brown adi-

pocytes has been detected in adult human samples from

both the periadrenal region of benign adrenal tumor

patients and the supraclavicular region of healthy indi-

viduals [71].

Although brown adipocytes have been identified in

multiple BAT depots of adult humans ranging from supr-

aclavicular area, posterior mediastinum, retroperitoneal

and intra-abdominal regions to mesenteric depots, their

identity is still controversial. Several reports suggest that

these brown adipocytes in adult humans resemble murine

beige adipocytes [112, 131]. This view is further supported

by the analysis of molecular signatures of clonally derived

adipocytes from superclavicular BAT in adult humans

[114]. However, the other study indicates that cold-induced

BAT from adult human neck area consists of classical

brown adipocytes [27]. In addition, it has also been shown

that activated thermogenic fat in the supraclavicular region

is composed of both classical brown and beige adipocytes

[55].

WAT browning can exert a significant impact on whole-

body metabolism in humans. Evidence shows that white

adipocytes in patients with pheochromocytoma undergo

direct transformation into brown adipocytes, which is

associated with elevated thermogenesis and lower BMI in

patients [41]. Body weight reduction has also been reported

in patients with hibernoma due to ectopic de novo devel-

opment of brown adipocytes [2]. However, the extent to

which WAT browning contributes to weight loss is not

clear until recently. According to one study on three young

individuals, mathematical analysis with a modest assump-

tion suggests a decrease in approximately 4.1 kg of adipose

tissue over the course of one year, if human BAT were

fully activated [124]. Recent studies indicate that BAT

activation in humans minimally contributes to the increase

in energy expenditure which is only about 15–25 kcal/day,

resulting in an estimated weight loss of 1 kg/year [84, 94].

Furthermore, it is still unclear how much white fat can be

converted into beige fat in adult humans. In addition to the

effects on human body weight, increased activation of

thermogenic fat induced by cold acclimation can poten-

tially enhance energy metabolism and insulin sensitization

[22, 68]. It will be of clinical significance to induce white-

to-brown transformation in the treatment of obesity and

type 2 diabetes.

Cellular and physiological functions of brown and beige

adipocytes have been extensively reviewed recently

[29, 57, 92]. A growing number of studies indicate that the

recruitment of beige adipocytes relies on various extrinsic

factors such as hormones and secreted molecules derived

from various tissues and organs. In this review, we will

summarize recent advances in understanding how different

organs and systems contribute to the development and

function of beige adipocytes.

Central nervous system (CNS)

A recent emphasis has been placed on the role of the

hypothalamus of the CNS in beige adipocyte development

and function [31, 105, 136]. The hypothalamus not only

senses body temperature fluctuation in cold, but also

responds to peripheral signals including hormones and

nutrients to modulate sympathetic outputs [93, 99]. The

arcuate nucleus (ARC) of the hypothalamus is one of the

important nodes where these peripheral signals converge to

regulate browning [26, 82]. The AgRP/NPY neurons are

hunger-promoting neurons expressing agouti-related pro-

tein and neuropeptide Y, while POMC/CART neurons are

satiety neurons expressing proopiomelanocortin and

cocaine–amphetamine-regulated transcript. These two

major sets of neurons in the ARC respond, generally in

opposite directions, to hormones such as leptin, insulin, and

ghrelin, as well as nutrients such as glucose, amino acids,

and fatty acids [9, 30, 117]. Previous studies have impli-

cated the role of central leptin in the regulation of WAT

browning. Supported by direct genetic evidence leptin-

stimulated phosphatidylinositol 3-kinase (PI3K) signaling

in the CNS has been shown to modulate energy expendi-

ture via activation of sympathetic nerve activity to

perigonadal WAT resulting in BAT-like differentiation of

WAT in mice [93]. But more efforts will be required to

identify the exact anatomical site and nature of the

hypothalamic leptin-responsive neurons responsible for

mediating sympathetic nerve activity in WAT. In addition

to hormones, the effects of these two neuronal populations

on WAT browning are closely correlated with the body’s

energy state. In the fed state, insulin and leptin act syner-

gistically on POMC neurons to stimulate beige adipocyte

activation in inguinal WAT [31]. Genetic ablation of two

phosphatases PTP1B and TCPTP that negatively regulate

insulin and leptin pathways in POMC neurons leads to

increased WAT browning [31]. In the fasting state, the

hunger-promoting hormone ghrelin activates AgRP neu-

rons, which inhibit browning in retroperitoneal WAT.

O-GlcNAc transferase (OGT) is enriched in AgRP neurons,

and its expression is increased in response to fasting and

ghrelin [105]. OGT knockout in AgRP neurons inhibits
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neuronal excitability and abrogates the suppression of

WAT browning by fasting and ghrelin. These studies

demonstrate that AgRP and POMC neurons regulate WAT

browning through directly modulating sympathetic nerve

activity; however, neural circuits linking these neurons to

sympathetic innervation onto different WAT depots need

to be further explored [46, 113].

Enriched environment (EE) abundant with complex

physical and social stimulations is important for increased

neurogenesis, improved cognitive performance and resis-

tance to cerebral insults [17, 80]. Recently, EE has also

been found to trigger beige adipocyte induction [16]. EE

induces hypothalamic expression of the brain-derived

neurotrophic factor (BDNF), which subsequently increases

b-adrenergic receptor (b-AR) and norepinephrine (NE)

levels in WAT, and this SNS outflow in WAT ultimately

results in browning of retroperitoneal and epididymal

WAT and decreased adiposity in mice [16]. It has also been

reported that the ventromedial nucleus (VMH) and the

paraventricular nucleus (PVN) are vital sites of BDNF

action [126, 127]. Moreover, hypothalamic BDNF also

regulates VEGF signaling in retroperitoneal WAT that is

required for angiogenesis and browning induced by diverse

physiological and pharmacological approaches [32].

Although growing evidence demonstrates that acute exer-

cise induces a significant increase in the BDNF level,

which might benefit brain cognition, it has yet to be

determined whether exercise-induced BDNF has effects on

browning of WAT [36, 52, 121].

Recent studies show that central serotonin neurons are

indispensable for sympathetic activation of brown and

beige adipocytes in inguinal WAT in response to cold [77].

In fact, our knowledge of neuronal circuits that control the

browning process is still fragmentary. More studies are

needed to expand our understanding of how the CNS

modulates WAT browning.

Sympathetic nervous system (SNS)

The SNS is believed to be a master regulator of both the

recruitment and activation of beige adipocytes

[29, 103, 122]. Either physiological stimuli such as chronic

cold exposure or pharmacological agents such as b3-
adrenergic receptor (b3-AR) agonists, thiazolidinedione

(TZDs) and other PPARc agonists can activate sympathetic

nerve fibers in WATs [47]. Since most sympathetic nerve

fibers are actually noradrenergic, the propensity of WAT

depots to undergo browning is accompanied by enhanced

density of noradrenergic parenchymal nerve fibers [83]. Of

note, prolonged cold exposure induces WAT browning via

eliciting a significant increase in the total number of

sympathetic noradrenergic fibers as well as macrophage

activation. This leads to the release of catecholamine,

particularly norepinephrine (NE), to act on b3-AR and

activate mitochondrial biogenesis in adipocytes [7, 25, 44].

Moreover, chronic stimulation of WAT by b3-AR agonists

results in white adipocytes transformation into a brown

phenotype [50, 83]. It has also been suggested that a major

physiological action of PPARc agonists is to induce UCP1

expression in both BAT and WAT [111]. Interestingly, the

use of TZDs and other PPARc agonists may influence the

central regulation so as to indirectly reduce sympathetic

activity, but additional treatment of b3-AR agonists over-

comes this situation and synergizes with PPARc agonism

to increase thermogenic energy expenditure in WAT

[111, 130]. Overall, sympathetic activities vary between

different WAT depots under the basal, cold-induced, and

fasting-induced conditions [14, 105]. However, the mech-

anisms by which the SNS differentially regulates browning

in different WAT depots remain to be characterized.

Immune cells

Upon cold exposure, in addition to the sympathetic nerves,

eosinophil-derived interleukin (IL)-4 has been found to

induce catecholamine synthesis from alternatively acti-

vated macrophages (AAMs) that recruits and activates

beige adipocyte development in inguinal WAT [87, 96]. In

response to epithelial cytokines or microbe infection, group

2 innate lymphoid cells (ILC2 s) promote eosinophil and

AAMs via releasing a large amount of type 2 cytokines

[45, 79, 81, 85]. It has been recently identified that acti-

vated by IL-33, ILC2s induce beige adipocyte activation in

abdominal subcutaneous WAT in humans and epididymal

and inguinal WAT in mice [13, 79]. Mechanistically,

ILC2s can produce IL-5 and IL-13 to activate eosinophils

and AAMs to synthesize catecholamines. Independent of

the adaptive immune system, IL-33-elicited ILC2s also

drive the browning process by producing methionine-

enkephalin (MetEnk) that directly acts on adipocytes to

upregulate UCP1 expression [13]. The same group further

showed that activated ILC2 cells in thermoneutral mice

stimulate the proliferation of PDGFRa? adipocyte pre-

cursor cells, which then commit to the beige adipocyte

lineage [67].

Skeletal muscle

Acute and endurance exercise training brings about an

increase in brown adipocyte-specific genes’ expression in

WAT of mice [134]. Skeletal muscle-derived signals such

as myokines contribute to the conducive effects of exercise

[8]. Irisin, a myokine stimulated in muscle upon exercise,
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has been shown to act on subcutaneous white adipocytes to

induce browning in mice at least in part via PPARa
[12, 54]. Similar to mice, plasma irisin in humans increases

in response to acute exercise and decreases with weight

loss after bariatric surgery [51, 54]. Although muscle mass

is the strongest predictor of circulating irisin levels, current

knowledge of the long-term effects of irisin on browning of

WAT in humans is still absent. Meteorin-like (Metrnl),

another myokine induced in muscle after exercise and in

adipose tissue upon cold exposure, has been observed to

induce the cytokines IL4/IL13 and AAM activation to

promote production of catecholamine, ultimately leading to

browning of both epididymal and subcutaneous WAT in

mice [98]. These observations suggest that muscle-derived

myokines might engage type 2 innate immunity to control

beige adipocyte activation. The cytokine IL-6, released

from contracting skeletal muscle to the circulation [116], is

also required for a full induction of beige cell biogenesis in

murine inguinal WAT after exercise and cold exposure

[62]. IL-6 induces WAT browning at least partly through

increasing PGC-1a activity [62].

Recent studies demonstrate that certain metabolites

secreted from skeletal muscle after physical activity control

WAT browning. Lactate induces thermogenic gene

expression in murine and human adipocytes. In mice

treated with PPARc agonist, lactate triggers beige adipo-

cyte activation in subcutaneous WAT by modifying

intracellular redox [19]. The ketone body b-hydroxybu-
tyrate (b-HB) that impacts cellular redox state is a robust

inducer of browning in inguinal WAT [19]. b-Ami-

noisobutyric acid (BAIBA) is a secreted metabolite from

PGC-1a-expressing myocytes and its circulating levels in

mice and humans positively correlate with exercise [102].

BAIBA is found to be regulated by PGC-1a and increase

brown adipocyte-specific genes’ expression. Further

mechanistic experiments in rodents demonstrate that

BAIBA elicits browning of murine inguinal WAT in a

specific PPARa-dependent manner [102].

Heart

Atrial natriuretic peptides (ANP) and ventricular natriuretic

peptides (BNP) are predominantly released from the atria

and ventricles, respectively. These two cardiac natriuretic

peptides act through the natriuretic peptide receptor A

(NPRA), whose intracellular domain possesses a guanylyl

cyclase activity to generate the second messenger cGMP.

The natriuretic peptide receptor C (NPRC) is the clearance

receptor that binds ANP and BNP and removes them from

circulation. Cold exposure in mice is associated with an

increased ratio of NPRA to NPRC. Infusion of BNP into

mice dramatically increases Ucp1 and PGC-1a levels in

WAT via the p38 MAPK pathway, indicating that natri-

uretic peptides promote WAT browning to boost energy

expenditure in mice [11]. In addition, recent findings show

that Roux-en-Y gastric bypass (RYGB) surgery leads to

browning of gonadal WAT in female mice and this may be

explained in part by the upregulation of ANP and BNP

after RYGB [86]. Similar observations have been reported

in humans undergoing RYGB surgery, although detailed

mechanisms by which RYGB surgery promotes beige

adipocyte biogenesis in supraclavicular adipose tissue are

still unknown [97].

Gut

The gastrointestinal tract is known as the largest endocrine

organ that secrets a number of regulatory peptide hormones

[3]. The intestinal microbiota develops within the host, and

its composition is continuously influenced by different

physiological conditions [64, 72, 101]. Cold exposure is

known to alter microbiota composition, and transplantation

of the microbiota from mice under prolonged cold expo-

sure to germ-free mice is sufficient to promote browning of

inguinal and perigonadal WAT [20]. There is also the

evidence that depletion of microbiota either by means of

antibiotic treatment or in germ-free mice promotes beige

fat development in inguinal subcutaneous and perigonadal

visceral adipose tissues, which is mediated via enhanced

type 2 cytokine signaling [118]. Re-colonization of

antibiotic-treated or germ-free mice with microbiota

reverses the browning phenotypes that are induced by

microbiota depletion [118]. Collectively, these results hold

promise for the induction of beige adipocyte in humans

through the transplantation of functional microbiota.

Farnesoid X receptor (FXR) is a ligand-activated tran-

scriptional factor expressed in diverse tissues including the

intestine. Bile acids act as endogenous ligands for FXR and

bile acids released during a meal can selectively activate

intestinal FXR [37, 38, 59, 66]. In mimicking this tissue-

selective effect, gut-restricted FXR agonist fexaramine is

able to reduce diet-induced weight gain and activate

inguinal WAT browning in mice via enhanced b-adrener-
gic signaling [37]. These results offer insight into intestinal

FXR activation, instead of systemic FXR agonism, as a

promising approach in the treatment of metabolic

morbidities.

Liver

The autocrine/paracrine hormone fibroblast growth factor

21(FGF21) is a key member of FGF superfamily that is

produced mainly from liver and could be induced after
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fasting [4, 53]. Pharmacological administration of FGF21

induces browning of inguinal and perirenal WAT, which is

evidenced by increased levels of thermogenic genes and

histological appearance of increased brown-like adipocytes

[40]. One possible mechanism is that FGF21 post-tran-

scriptionally regulates PGC-1a levels in WAT [40]. Later,

it was reported that intraperitoneal injection of FGF21

normalizes hyperglycemia in diabetic mice independently

of insulin action in the liver, but largely due to increased

energy expenditure via activation of BAT and browning of

subcutaneous WAT [34]. However, FGF21 has serious

limitations in that both genetic and pharmacological gain-

of-functions of FGF21 are found to severely decrease bone

mass in humans [129]. It has been further demonstrated

that FGF21 inhibits osteoblastogenesis but enhances bone

marrow adipogenesis by potentiating the activity of per-

oxisome proliferator-activated receptor c (PPAR-c) [129].
Recent human studies show that circulating FGF21 levels

are elevated in lipodystrophy and metabolically unhealthy

obesity [10, 78]. Therefore, the clinical application of

FGF21 as a potential drug for the treatment of obesity and

type 2 diabetes is less likely desirable.

Adipose tissue

Apart from the tissues described above, adipose tissue itself

can produce secreted factors that enhance the recruitment

of beige adipocytes. A recent study reveals that adenosine

released from brown adipocytes during the stimulation of

sympathetic nerves plays a critical role in the induction of

beige adipocytes [43]. The adenosine A2A receptor is the

most abundant adenosine receptor in human and murine

BAT. Although A2A levels are scarcely expressed in white

adipocytes, either pharmacological stimulation of the A2A

receptors or injection of lentiviral vectors expressing the

A2A receptor into inguinal WAT induces beige adipocyte

development [43].

In addition, vascular endothelial growth factor (VEGF)-

A secreted by adipocytes plays a pivotal role in adipose

tissue angiogenesis [18, 48]. Upregulation of VEGF-A in

retroperitoneal WAT improves vascularization and leads to

browning of WAT [32]. Moreover, transgenic overex-

pression of VEGF in adipose tissue may also directly

recruit brown and beige adipocytes and triggers browning

of WAT; however, the molecular basis is unclear [33, 119].

It is still worth pointing out that cold exposure induces

angiogenesis in both brown and white adipose tissues

independently of hypoxia [135]. In inguinal WAT, cold

exposure not only results in the browning phenotype with

multilocular UCP1-positive adipocytes, but also leads to an

increased production of VEGF. However, there is no direct

evidence that VEGF-mediated vascularization is sufficient

or necessary to induce browning.

Disease-induced browning of WAT

Cancer

Cancer-associated cachexia (CAC) is characterized by

systemic inflammation, body weight loss, atrophy of adi-

pose tissue, and skeletal muscle wasting [39]. A systematic

morphological analysis of WAT depots in the cachectic

mouse models of several cancer types such as Kras-pan-

creatic and lung cancer identified a robust phenotypic

switch from white to beige fat in subcutaneous WAT [91].

WAT browning takes place in the early stages of CAC

before skeletal muscle atrophy, whereas inhibiting

inflammation or b-adrenergic signaling significantly redu-

ces WAT browning and alleviates the severity of cachexia

[91]. WAT browning is also observed in cancer cachexia

patients, characterized by increased UCP1 staining in

intestine adipose tissue as well as fat surrounding the liver,

kidney and pancreas [91]. In pursuit of the mechanism

underlying WAT browning in CAC mouse models, IL-6

signaling together with b-adrenergic activation was found

to jointly trigger and sustain WAT browning in cachexia

[91]. Insight into how tumors induce the development of

beige adipocytes is also enriched by a study on tumor-

derived parathyroid hormone-related protein (PTHrP) [60].

Lewis lung carcinoma-derived PTHrP has been demon-

strated to initiate WAT browning and muscle loss, and

neutralization of PTHrP is able to prevent tumor-induced

browning of WAT [60]. Collectively, blockage of CAC-

induced beige adipocyte biogenesis may underlie the

translational value to ameliorate cachexia in cancer

patients.

Benign tumors

Several case studies further demonstrate the impact of

various benign human tumors on fat browning.

Pheochromocytoma is a catecholamine-secreting tumor.

In affected patients, omental white adipocytes can trans-

differentiate into brown adipocytes due to ectopic

adrenergic stimulation [41]. Another study in patients

with benign adrenal tumors indicates a white-brown

plasticity of the white fat in the periadrenal region [71].

Similarly, tissue sections from human hibernoma exhibit

three different adipocyte morphologies: unilocular, mul-

tilocular, and paucilocular. The various intermediate

forms of adipocytes suggest a reversible transition

between white and brown adipocytes [75].
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HIV infection

In addition to cancer, the influence of other diseases on fat

browning in adult humans has been documented. HIV-in-

fected subjects with lipodystrophy are characterized by the

presence of excessive dorsocervical fat. Dorsocervical fat

accumulation is correlated with the downregulation of

brown and beige fat genes in nonlipomatous abdominal

subcutaneous fat [120]. These observations indicate that

WAT browning is impaired in lipodystrophic HIV patients.

It is reasonable to speculate that stimulating browning of

WAT might improve metabolic health in this population.

Tissue non-specific regulators

Beige adipocyte development is regulated by a large

variety of intrinsic factors, some of which are not confined

to a specific tissue. Such molecules and related signaling

pathways important for beige adipocyte activation are

highlighted below.

Cyclooxygenase (COX)-2/and prostaglandin (PG)

COX-2 serves as a rate-limiting enzyme in the synthesis of

PG. COX-2 is required for the induction of beige adipo-

cytes in mice as a downstream effector of b-adrenergic
signaling in visceral WAT depots under cold exposure

[74, 123]. Notably, local COX-2 overexpression in intra-

abdominal WAT is sufficient for WAT browning. In

addition, microsomal prostaglandin E (PGE) synthase-1

(mPGES-1) has recently been shown to be necessary for

murine beige adipocyte biogenesis from pre-adipocytes

[42]. Further mechanistic studies suggest that COX-2-PG

pathway shifts the differentiation of defined mesenchymal

progenitors toward a brown adipocyte phenotype by acting

on both the cellular prostacyclin (PGI2) transmembrane

receptor and the nuclear receptor PPARc [42, 123].

Transforming growth factor (TGF)-b superfamily

Bone morphogenetic proteins (BMPs) are the members of

the TGF-b superfamily. BMPs have recently been impli-

cated with the ability to stimulate beige adipocyte

development. Genetic knockout of the type 1A BMP

receptor (Bmpr1a) in brown adipogenic progenitor cells

results in a severe paucity of classical brown adipocytes,

which in turn increases sympathetic input to WAT with

elevated circulating NE, thereby promoting compensatory

browning in both inguinal and epididymal WAT [107].

Moreover, gain- and loss-of-function experiments show

that bone morphogenetic protein 4 (BMP4) recruits beige

adipocytes in inguinal WAT by targeting PGC-1a [95]. It

has also been reported that a subpopulation of adipogenic

progenitors (Sca-1?/CD45-/Mac1-; referred to as Sca-1?

progenitor cells, ScaPCs) residing in skeletal muscle and

inguinal WAT is highly inducible to differentiation into

beige adipocytes upon stimulation with BMP7 [108]. In

addition, BMP7 suppresses ROCK to facilitate beige adi-

pocyte formation via mediating the G-actin-regulated

transcriptional coactivator myocardin-related transcription

factor A, MRTFA [76]. The mechanisms, however, by

which TGFb family members regulate ROCK are still

unclear. The role of TGF-b signaling in regulating fat

browning is further supported by the pharmacological

studies of the activin receptor type IIB (ActRIIB), a type II

receptor that binds to multiple ligands from the TGF-b
superfamily such as the activin and BMP subgroups [106].

Administration of a soluble ActRIIB protein comprised of

a form of the extracellular domain of ActRIIB fused to a

human Fc (ActRIIB-Fc) leads to an induction of beige

adipocytes in epididymal WAT, yet the underlying mech-

anism is poorly defined [63].

Concluding remarks

Systemic homeostasis is achieved through coordinated

metabolic regulation among multiple tissues/organs. Being

no exception, the development and activation of beige

adipocytes are also controlled by signals derived from

various tissues/organs. Despite the recent explosion in our

understanding of such metabolic communication between

beige adipocytes and other tissues/organs, it is still a long

way to go to fully describe the contribution of each indi-

vidual tissue or organ to the browning process and how

beige adipocytes integrate these signals.

As we are gaining a better understanding of the induc-

tion of beige adipocytes, our knowledge concerning the

contribution of beige fat cells to energy expenditure and

whole-body metabolic homeostasis has also greatly

improved.

There is evidence that the function of beige adipocytes

in regulation of energy expenditure and thermogenesis

may be not entirely mediated by UCP1 [5, 15, 100].

Recently, beige adipocytes are shown to be able to utilize

creatine to stimulate mitochondrial respiration when ADP

is limiting [58]. These data suggest that creatine-driven

futile substrate cycle could be another important mecha-

nism of thermoregulation in beige adipocytes independent

of UCP1 [58].

In addition to generating heat and mediating energy

expenditure, mounting evidence suggests that beige adi-

pocytes also contribute to whole-body glucose and lipid

homeostasis. Adipocyte-specific expression of PRDM16 in

obese mice not only leads to increased beige fat mass and
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significantly reduced adipose mass, but also greatly

improves glucose tolerance [110]. Apart from subcuta-

neous adiposity, hepatic steatosis turns out to be the major

phenotype in mice with adipocyte-specific deletion of

PRDM16 [24]. Beige fat may also secrete molecules into

the circulation to improve glucose homeostasis. Recent

study reveals that mice transplanted with inguinal WAT

from exercise-trained mice show increased glucose and

fatty acid uptake than those receiving inguinal WAT from

sedentary or sham-treated mice [115]. These findings

indicate a potentially direct function for beige adipocytes in

reducing circulating glucose and fatty acids, independently

on its regulation of body weight. We need future studies to

address new functions of beige adipocytes and their regu-

latory circuits apart from thermogenesis.
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