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Abstract Adaptive thermogenesis is an important com-
ponent of energy expenditure. Brown adipocytes are best
known for their ability to convert chemical energy into
heat. Beige cells are brown-like adipocytes that arise in
white adipose tissue in response to certain environmental
cues to dissipate heat and improve metabolic homeostasis.
A large body of intrinsic factors and external signals are
critical for the function of beige adipocytes. In this review,
we discuss recent advances in our understanding of neu-
ronal, hormonal, and metabolic regulation of the
development and activation of beige adipocytes, with a
focus on the regulation of beige adipocytes by other organs,
tissues, and cells. Understanding the cellular and molecular
mechanisms of inter-organ regulation of adipose tissue
browning may provide an avenue for combating obesity
and associated diseases.
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Introduction

A major type of thermogenic tissue in mammals is brown
adipose tissue (BAT). In mice, BAT is located constitu-
tively in the anterior subcutaneous region including the
interscapular, axillary and cervical fat [29]. Brown adipo-
cytes are characterized by multilocular lipid droplets and a
high density of iron-containing mitochondria that give the
eponymous appearance [23]. Uncoupling protein 1 (UCP1)
is a key thermogenic factor in brown adipocytes. When
activated by long-chain fatty acids, UCP1 catalyzes a
proton leak across the inner membrane, thus bypasses ATP
synthase, dissipates the electrochemical gradient, and
generates heat [6, 65]. Moreover, high vascularization of
BAT facilitates sufficient nutrition and oxygen supply as
well as efficient heat output to the whole body through
circulation (Fig. 1).

Recent studies have uncovered another type of ther-
mogenic adipocytes known as beige/brite (brown in white)
adipocytes. Beige/brite cells share morphological and
functional similarities with brown adipocytes. Beige/brite
cells express a key set of brown fat-specific genes includ-
ing UCP1 and also undergo thermogenesis via uncoupling
of oxidative phosphorylation from ATP production [133].
Although it seems interchangeable between the terms
“beige” and “brite” adipocytes, the beige originally refers
to those thermogenic adipocytes isolated from subcuta-
neous WAT depots like inguinal WAT and the brite are
from their visceral counterparts such as epididymal and
mesenteric depots [90, 131]. Typically, the inguinal WAT
is more prone to browning/beiging [125], but the epididy-
mal WAT also possess bipotent adipogenic precursor cells
that can differentiate into both white and UCP1* adipo-
cytes under different conditions [70]. Hereinafter, all these
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Fig. 1 The inter-organ regulation of adipose tissue browning. The
schematic illustrates the cellular and molecular mechanisms of inter-
organ regulation of adipose tissue browning in mice, human or both.
A number of organs, tissues and cells have been found to either act
alone or in concert to promote browning of white adipose tissue. This

inducible thermogenic adipocytes will be referred to as
beige adipocytes.

The recruitment of beige adipocytes, i.e., the browning
process, is potently activated by cold exposure. Chronic
cold acclimation of mice induces a substantial amount of
beige adipocytes in posterior subcutaneous, retroperitoneal
and perigonadal fat depots [125, 137]. Moreover, cold-in-
duced formation of beige adipocytes in mice can be
reversed within 5 weeks of warm adaptation, suggesting
that browning is a reversible and dynamic process [104].

Distinct from brown adipocytes, beige adipocytes have
certain unique features. A majority of brown adipocytes
arise from multipotent cells of the dermomyotome
[57, 109], whereas beige adipocytes are thought to origi-
nate from mesenchymal precursors that also give rise to
smooth muscle or smooth muscle-like cells [70, 73]. It has
been further demonstrated that RhoA signaling controls the
fate of mesenchymal stem cells (MSCs) to an adipogenic
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simplified overview delineates the regulation of beige adipocyte
induction by central nervous system (CNS), sympathetic nervous
system (SNS), immune cells, skeletal muscle, heart, gut, liver,
adipose tissue, disease-associated, or tissue non-specific factors (for
details, see the text)

versus smooth muscle-like lineage [76]. In addition, it is
generally believed that most cold-induced beige adipocytes
originate from de novo-differentiated adipocytes [128].
However, beige adipocytes may also derive from the
conversion of mature white adipocytes in response to cold
or B3-adrenergic stimuli [50, 70, 73, 104, 128, 131]. The
latter is corroborated by a recent study showing that most
UCP1" adipocytes in inguinal WAT upon cold exposure
stem from pre-existing mature adipocytes [69].

So far, many intrinsic transcription factors and cofactors
have been identified that robustly trigger beige adipocyte
biogenesis [35, 57, 132]. One of these regulators is
PRDM16 that is highly expressed in inguinal white fat
relative to other white fat depots in mice and plays a key
role in regulating the determination and activation of beige
adipocytes [21, 56, 89, 110]. Moreover, PRDM16-binding
partners such as PPARYy coactivator 1o (PGCla), C/EBP-
B, Euchromatic histone-lysine N-methyltransferase 1
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(EHMT1), and Zfp516 serve as powerful transcriptional
activators [28, 61, 88].

Human thermogenic fat

It has long been known that classical brown adipocytes
exist in the interscapular regions of human infants and
diminish with age [1, 49]. The existence of brown adi-
pocytes has been detected in adult human samples from
both the periadrenal region of benign adrenal tumor
patients and the supraclavicular region of healthy indi-
viduals [71].

Although brown adipocytes have been identified in
multiple BAT depots of adult humans ranging from supr-
aclavicular area, posterior mediastinum, retroperitoneal
and intra-abdominal regions to mesenteric depots, their
identity is still controversial. Several reports suggest that
these brown adipocytes in adult humans resemble murine
beige adipocytes [112, 131]. This view is further supported
by the analysis of molecular signatures of clonally derived
adipocytes from superclavicular BAT in adult humans
[114]. However, the other study indicates that cold-induced
BAT from adult human neck area consists of classical
brown adipocytes [27]. In addition, it has also been shown
that activated thermogenic fat in the supraclavicular region
is composed of both classical brown and beige adipocytes
[55].

WAT browning can exert a significant impact on whole-
body metabolism in humans. Evidence shows that white
adipocytes in patients with pheochromocytoma undergo
direct transformation into brown adipocytes, which is
associated with elevated thermogenesis and lower BMI in
patients [41]. Body weight reduction has also been reported
in patients with hibernoma due to ectopic de novo devel-
opment of brown adipocytes [2]. However, the extent to
which WAT browning contributes to weight loss is not
clear until recently. According to one study on three young
individuals, mathematical analysis with a modest assump-
tion suggests a decrease in approximately 4.1 kg of adipose
tissue over the course of one year, if human BAT were
fully activated [124]. Recent studies indicate that BAT
activation in humans minimally contributes to the increase
in energy expenditure which is only about 15-25 kcal/day,
resulting in an estimated weight loss of 1 kg/year [84, 94].
Furthermore, it is still unclear how much white fat can be
converted into beige fat in adult humans. In addition to the
effects on human body weight, increased activation of
thermogenic fat induced by cold acclimation can poten-
tially enhance energy metabolism and insulin sensitization
[22, 68]. It will be of clinical significance to induce white-
to-brown transformation in the treatment of obesity and
type 2 diabetes.

Cellular and physiological functions of brown and beige
adipocytes have been extensively reviewed recently
[29, 57, 92]. A growing number of studies indicate that the
recruitment of beige adipocytes relies on various extrinsic
factors such as hormones and secreted molecules derived
from various tissues and organs. In this review, we will
summarize recent advances in understanding how different
organs and systems contribute to the development and
function of beige adipocytes.

Central nervous system (CNS)

A recent emphasis has been placed on the role of the
hypothalamus of the CNS in beige adipocyte development
and function [31, 105, 136]. The hypothalamus not only
senses body temperature fluctuation in cold, but also
responds to peripheral signals including hormones and
nutrients to modulate sympathetic outputs [93, 99]. The
arcuate nucleus (ARC) of the hypothalamus is one of the
important nodes where these peripheral signals converge to
regulate browning [26, 82]. The AgRP/NPY neurons are
hunger-promoting neurons expressing agouti-related pro-
tein and neuropeptide Y, while POMC/CART neurons are
satiety neurons expressing proopiomelanocortin and
cocaine—amphetamine-regulated transcript. These two
major sets of neurons in the ARC respond, generally in
opposite directions, to hormones such as leptin, insulin, and
ghrelin, as well as nutrients such as glucose, amino acids,
and fatty acids [9, 30, 117]. Previous studies have impli-
cated the role of central leptin in the regulation of WAT
browning. Supported by direct genetic evidence leptin-
stimulated phosphatidylinositol 3-kinase (PI3K) signaling
in the CNS has been shown to modulate energy expendi-
ture via activation of sympathetic nerve activity to
perigonadal WAT resulting in BAT-like differentiation of
WAT in mice [93]. But more efforts will be required to
identify the exact anatomical site and nature of the
hypothalamic leptin-responsive neurons responsible for
mediating sympathetic nerve activity in WAT. In addition
to hormones, the effects of these two neuronal populations
on WAT browning are closely correlated with the body’s
energy state. In the fed state, insulin and leptin act syner-
gistically on POMC neurons to stimulate beige adipocyte
activation in inguinal WAT [31]. Genetic ablation of two
phosphatases PTP1B and TCPTP that negatively regulate
insulin and leptin pathways in POMC neurons leads to
increased WAT browning [31]. In the fasting state, the
hunger-promoting hormone ghrelin activates AgRP neu-
rons, which inhibit browning in retroperitoneal WAT.
O-GlcNAc transferase (OGT) is enriched in AgRP neurons,
and its expression is increased in response to fasting and
ghrelin [105]. OGT knockout in AgRP neurons inhibits
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neuronal excitability and abrogates the suppression of
WAT browning by fasting and ghrelin. These studies
demonstrate that AgRP and POMC neurons regulate WAT
browning through directly modulating sympathetic nerve
activity; however, neural circuits linking these neurons to
sympathetic innervation onto different WAT depots need
to be further explored [46, 113].

Enriched environment (EE) abundant with complex
physical and social stimulations is important for increased
neurogenesis, improved cognitive performance and resis-
tance to cerebral insults [17, 80]. Recently, EE has also
been found to trigger beige adipocyte induction [16]. EE
induces hypothalamic expression of the brain-derived
neurotrophic factor (BDNF), which subsequently increases
B-adrenergic receptor (B-AR) and norepinephrine (NE)
levels in WAT, and this SNS outflow in WAT ultimately
results in browning of retroperitoneal and epididymal
WAT and decreased adiposity in mice [16]. It has also been
reported that the ventromedial nucleus (VMH) and the
paraventricular nucleus (PVN) are vital sites of BDNF
action [126, 127]. Moreover, hypothalamic BDNF also
regulates VEGF signaling in retroperitoneal WAT that is
required for angiogenesis and browning induced by diverse
physiological and pharmacological approaches [32].
Although growing evidence demonstrates that acute exer-
cise induces a significant increase in the BDNF level,
which might benefit brain cognition, it has yet to be
determined whether exercise-induced BDNF has effects on
browning of WAT [36, 52, 121].

Recent studies show that central serotonin neurons are
indispensable for sympathetic activation of brown and
beige adipocytes in inguinal WAT in response to cold [77].
In fact, our knowledge of neuronal circuits that control the
browning process is still fragmentary. More studies are
needed to expand our understanding of how the CNS
modulates WAT browning.

Sympathetic nervous system (SNS)

The SNS is believed to be a master regulator of both the
recruitment and activation of Dbeige adipocytes
[29, 103, 122]. Either physiological stimuli such as chronic
cold exposure or pharmacological agents such as [3-
adrenergic receptor (B3-AR) agonists, thiazolidinedione
(TZDs) and other PPARY agonists can activate sympathetic
nerve fibers in WATSs [47]. Since most sympathetic nerve
fibers are actually noradrenergic, the propensity of WAT
depots to undergo browning is accompanied by enhanced
density of noradrenergic parenchymal nerve fibers [83]. Of
note, prolonged cold exposure induces WAT browning via
eliciting a significant increase in the total number of
sympathetic noradrenergic fibers as well as macrophage

@ Springer

activation. This leads to the release of catecholamine,
particularly norepinephrine (NE), to act on 3-AR and
activate mitochondrial biogenesis in adipocytes [7, 25, 44].
Moreover, chronic stimulation of WAT by B3-AR agonists
results in white adipocytes transformation into a brown
phenotype [50, 83]. It has also been suggested that a major
physiological action of PPARY agonists is to induce UCP1
expression in both BAT and WAT [111]. Interestingly, the
use of TZDs and other PPARYy agonists may influence the
central regulation so as to indirectly reduce sympathetic
activity, but additional treatment of B3-AR agonists over-
comes this situation and synergizes with PPARYy agonism
to increase thermogenic energy expenditure in WAT
[111, 130]. Overall, sympathetic activities vary between
different WAT depots under the basal, cold-induced, and
fasting-induced conditions [14, 105]. However, the mech-
anisms by which the SNS differentially regulates browning
in different WAT depots remain to be characterized.

Immune cells

Upon cold exposure, in addition to the sympathetic nerves,
eosinophil-derived interleukin (IL)-4 has been found to
induce catecholamine synthesis from alternatively acti-
vated macrophages (AAMs) that recruits and activates
beige adipocyte development in inguinal WAT [87, 96]. In
response to epithelial cytokines or microbe infection, group
2 innate lymphoid cells (ILC2 s) promote eosinophil and
AAMs via releasing a large amount of type 2 cytokines
[45, 79, 81, 85]. It has been recently identified that acti-
vated by IL-33, ILC2s induce beige adipocyte activation in
abdominal subcutaneous WAT in humans and epididymal
and inguinal WAT in mice [13, 79]. Mechanistically,
ILC2s can produce IL-5 and IL-13 to activate eosinophils
and AAMs to synthesize catecholamines. Independent of
the adaptive immune system, IL-33-elicited ILC2s also
drive the browning process by producing methionine-
enkephalin (MetEnk) that directly acts on adipocytes to
upregulate UCP1 expression [13]. The same group further
showed that activated ILC2 cells in thermoneutral mice
stimulate the proliferation of PDGFRo+ adipocyte pre-
cursor cells, which then commit to the beige adipocyte
lineage [67].

Skeletal muscle

Acute and endurance exercise training brings about an
increase in brown adipocyte-specific genes’ expression in
WAT of mice [134]. Skeletal muscle-derived signals such
as myokines contribute to the conducive effects of exercise
[8]. Irisin, a myokine stimulated in muscle upon exercise,
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has been shown to act on subcutaneous white adipocytes to
induce browning in mice at least in part via PPARa
[12, 54]. Similar to mice, plasma irisin in humans increases
in response to acute exercise and decreases with weight
loss after bariatric surgery [51, 54]. Although muscle mass
is the strongest predictor of circulating irisin levels, current
knowledge of the long-term effects of irisin on browning of
WAT in humans is still absent. Meteorin-like (Metrnl),
another myokine induced in muscle after exercise and in
adipose tissue upon cold exposure, has been observed to
induce the cytokines IL4/IL13 and AAM activation to
promote production of catecholamine, ultimately leading to
browning of both epididymal and subcutanecous WAT in
mice [98]. These observations suggest that muscle-derived
myokines might engage type 2 innate immunity to control
beige adipocyte activation. The cytokine IL-6, released
from contracting skeletal muscle to the circulation [116], is
also required for a full induction of beige cell biogenesis in
murine inguinal WAT after exercise and cold exposure
[62]. IL-6 induces WAT browning at least partly through
increasing PGC-1a activity [62].

Recent studies demonstrate that certain metabolites
secreted from skeletal muscle after physical activity control
WAT browning. Lactate induces thermogenic gene
expression in murine and human adipocytes. In mice
treated with PPARYy agonist, lactate triggers beige adipo-
cyte activation in subcutaneous WAT by modifying
intracellular redox [19]. The ketone body B-hydroxybu-
tyrate (B-HB) that impacts cellular redox state is a robust
inducer of browning in inguinal WAT [19]. B-Ami-
noisobutyric acid (BAIBA) is a secreted metabolite from
PGC-1la-expressing myocytes and its circulating levels in
mice and humans positively correlate with exercise [102].
BAIBA is found to be regulated by PGC-1a and increase
brown adipocyte-specific genes’ expression. Further
mechanistic experiments in rodents demonstrate that
BAIBA elicits browning of murine inguinal WAT in a
specific PPARa-dependent manner [102].

Heart

Atrial natriuretic peptides (ANP) and ventricular natriuretic
peptides (BNP) are predominantly released from the atria
and ventricles, respectively. These two cardiac natriuretic
peptides act through the natriuretic peptide receptor A
(NPRA), whose intracellular domain possesses a guanylyl
cyclase activity to generate the second messenger cGMP.
The natriuretic peptide receptor C (NPRC) is the clearance
receptor that binds ANP and BNP and removes them from
circulation. Cold exposure in mice is associated with an
increased ratio of NPRA to NPRC. Infusion of BNP into
mice dramatically increases Ucpl and PGC-1la levels in

WAT via the p38 MAPK pathway, indicating that natri-
uretic peptides promote WAT browning to boost energy
expenditure in mice [11]. In addition, recent findings show
that Roux-en-Y gastric bypass (RYGB) surgery leads to
browning of gonadal WAT in female mice and this may be
explained in part by the upregulation of ANP and BNP
after RYGB [86]. Similar observations have been reported
in humans undergoing RYGB surgery, although detailed
mechanisms by which RYGB surgery promotes beige
adipocyte biogenesis in supraclavicular adipose tissue are
still unknown [97].

Gut

The gastrointestinal tract is known as the largest endocrine
organ that secrets a number of regulatory peptide hormones
[3]. The intestinal microbiota develops within the host, and
its composition is continuously influenced by different
physiological conditions [64, 72, 101]. Cold exposure is
known to alter microbiota composition, and transplantation
of the microbiota from mice under prolonged cold expo-
sure to germ-free mice is sufficient to promote browning of
inguinal and perigonadal WAT [20]. There is also the
evidence that depletion of microbiota either by means of
antibiotic treatment or in germ-free mice promotes beige
fat development in inguinal subcutaneous and perigonadal
visceral adipose tissues, which is mediated via enhanced
type 2 cytokine signaling [118]. Re-colonization of
antibiotic-treated or germ-free mice with microbiota
reverses the browning phenotypes that are induced by
microbiota depletion [118]. Collectively, these results hold
promise for the induction of beige adipocyte in humans
through the transplantation of functional microbiota.

Farnesoid X receptor (FXR) is a ligand-activated tran-
scriptional factor expressed in diverse tissues including the
intestine. Bile acids act as endogenous ligands for FXR and
bile acids released during a meal can selectively activate
intestinal FXR [37, 38, 59, 66]. In mimicking this tissue-
selective effect, gut-restricted FXR agonist fexaramine is
able to reduce diet-induced weight gain and activate
inguinal WAT browning in mice via enhanced B-adrener-
gic signaling [37]. These results offer insight into intestinal
FXR activation, instead of systemic FXR agonism, as a
promising approach in the treatment of metabolic
morbidities.

Liver
The autocrine/paracrine hormone fibroblast growth factor

21(FGF21) is a key member of FGF superfamily that is
produced mainly from liver and could be induced after
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fasting [4, 53]. Pharmacological administration of FGF21
induces browning of inguinal and perirenal WAT, which is
evidenced by increased levels of thermogenic genes and
histological appearance of increased brown-like adipocytes
[40]. One possible mechanism is that FGF21 post-tran-
scriptionally regulates PGC-1a levels in WAT [40]. Later,
it was reported that intraperitoneal injection of FGF21
normalizes hyperglycemia in diabetic mice independently
of insulin action in the liver, but largely due to increased
energy expenditure via activation of BAT and browning of
subcutaneous WAT [34]. However, FGF21 has serious
limitations in that both genetic and pharmacological gain-
of-functions of FGF21 are found to severely decrease bone
mass in humans [129]. It has been further demonstrated
that FGF21 inhibits osteoblastogenesis but enhances bone
marrow adipogenesis by potentiating the activity of per-
oxisome proliferator-activated receptor ¥ (PPAR-y) [129].
Recent human studies show that circulating FGF21 levels
are elevated in lipodystrophy and metabolically unhealthy
obesity [10, 78]. Therefore, the clinical application of
FGF21 as a potential drug for the treatment of obesity and
type 2 diabetes is less likely desirable.

Adipose tissue

Apart from the tissues described above, adipose tissue itself
can produce secreted factors that enhance the recruitment
of beige adipocytes. A recent study reveals that adenosine
released from brown adipocytes during the stimulation of
sympathetic nerves plays a critical role in the induction of
beige adipocytes [43]. The adenosine A,, receptor is the
most abundant adenosine receptor in human and murine
BAT. Although A;4 levels are scarcely expressed in white
adipocytes, either pharmacological stimulation of the A,,
receptors or injection of lentiviral vectors expressing the
A, receptor into inguinal WAT induces beige adipocyte
development [43].

In addition, vascular endothelial growth factor (VEGF)-
A secreted by adipocytes plays a pivotal role in adipose
tissue angiogenesis [18, 48]. Upregulation of VEGF-A in
retroperitoneal WAT improves vascularization and leads to
browning of WAT [32]. Moreover, transgenic overex-
pression of VEGF in adipose tissue may also directly
recruit brown and beige adipocytes and triggers browning
of WAT; however, the molecular basis is unclear [33, 119].
It is still worth pointing out that cold exposure induces
angiogenesis in both brown and white adipose tissues
independently of hypoxia [135]. In inguinal WAT, cold
exposure not only results in the browning phenotype with
multilocular UCP1-positive adipocytes, but also leads to an
increased production of VEGF. However, there is no direct
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evidence that VEGF-mediated vascularization is sufficient
or necessary to induce browning.

Disease-induced browning of WAT
Cancer

Cancer-associated cachexia (CAC) is characterized by
systemic inflammation, body weight loss, atrophy of adi-
pose tissue, and skeletal muscle wasting [39]. A systematic
morphological analysis of WAT depots in the cachectic
mouse models of several cancer types such as Kras-pan-
creatic and lung cancer identified a robust phenotypic
switch from white to beige fat in subcutaneous WAT [91].
WAT browning takes place in the early stages of CAC
before skeletal muscle atrophy, whereas inhibiting
inflammation or B-adrenergic signaling significantly redu-
ces WAT browning and alleviates the severity of cachexia
[91]. WAT browning is also observed in cancer cachexia
patients, characterized by increased UCP1 staining in
intestine adipose tissue as well as fat surrounding the liver,
kidney and pancreas [91]. In pursuit of the mechanism
underlying WAT browning in CAC mouse models, IL-6
signaling together with B-adrenergic activation was found
to jointly trigger and sustain WAT browning in cachexia
[91]. Insight into how tumors induce the development of
beige adipocytes is also enriched by a study on tumor-
derived parathyroid hormone-related protein (PTHrP) [60].
Lewis lung carcinoma-derived PTHrP has been demon-
strated to initiate WAT browning and muscle loss, and
neutralization of PTHrP is able to prevent tumor-induced
browning of WAT [60]. Collectively, blockage of CAC-
induced beige adipocyte biogenesis may underlie the
translational value to ameliorate cachexia in cancer
patients.

Benign tumors

Several case studies further demonstrate the impact of
various benign human tumors on fat browning.
Pheochromocytoma is a catecholamine-secreting tumor.
In affected patients, omental white adipocytes can trans-
differentiate into brown adipocytes due to ectopic
adrenergic stimulation [41]. Another study in patients
with benign adrenal tumors indicates a white-brown
plasticity of the white fat in the periadrenal region [71].
Similarly, tissue sections from human hibernoma exhibit
three different adipocyte morphologies: unilocular, mul-
tilocular, and paucilocular. The various intermediate
forms of adipocytes suggest a reversible transition
between white and brown adipocytes [75].
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HIV infection

In addition to cancer, the influence of other diseases on fat
browning in adult humans has been documented. HIV-in-
fected subjects with lipodystrophy are characterized by the
presence of excessive dorsocervical fat. Dorsocervical fat
accumulation is correlated with the downregulation of
brown and beige fat genes in nonlipomatous abdominal
subcutaneous fat [120]. These observations indicate that
WAT browning is impaired in lipodystrophic HIV patients.
It is reasonable to speculate that stimulating browning of
WAT might improve metabolic health in this population.

Tissue non-specific regulators

Beige adipocyte development is regulated by a large
variety of intrinsic factors, some of which are not confined
to a specific tissue. Such molecules and related signaling
pathways important for beige adipocyte activation are
highlighted below.

Cyclooxygenase (COX)-2/and prostaglandin (PG)

COX-2 serves as a rate-limiting enzyme in the synthesis of
PG. COX-2 is required for the induction of beige adipo-
cytes in mice as a downstream effector of B-adrenergic
signaling in visceral WAT depots under cold exposure
[74, 123]. Notably, local COX-2 overexpression in intra-
abdominal WAT is sufficient for WAT browning. In
addition, microsomal prostaglandin E (PGE) synthase-1
(mPGES-1) has recently been shown to be necessary for
murine beige adipocyte biogenesis from pre-adipocytes
[42]. Further mechanistic studies suggest that COX-2-PG
pathway shifts the differentiation of defined mesenchymal
progenitors toward a brown adipocyte phenotype by acting
on both the cellular prostacyclin (PGI,) transmembrane
receptor and the nuclear receptor PPARYy [42, 123].

Transforming growth factor (TGF)-p superfamily

Bone morphogenetic proteins (BMPs) are the members of
the TGF-B superfamily. BMPs have recently been impli-
cated with the ability to stimulate beige adipocyte
development. Genetic knockout of the type 1A BMP
receptor (Bmprla) in brown adipogenic progenitor cells
results in a severe paucity of classical brown adipocytes,
which in turn increases sympathetic input to WAT with
elevated circulating NE, thereby promoting compensatory
browning in both inguinal and epididymal WAT [107].
Moreover, gain- and loss-of-function experiments show
that bone morphogenetic protein 4 (BMP4) recruits beige
adipocytes in inguinal WAT by targeting PGC-1a [95]. Tt

has also been reported that a subpopulation of adipogenic
progenitors (Sca-17/CD45 /Macl~; referred to as Sca-1"
progenitor cells, ScaPCs) residing in skeletal muscle and
inguinal WAT is highly inducible to differentiation into
beige adipocytes upon stimulation with BMP7 [108]. In
addition, BMP7 suppresses ROCK to facilitate beige adi-
pocyte formation via mediating the G-actin-regulated
transcriptional coactivator myocardin-related transcription
factor A, MRTFA [76]. The mechanisms, however, by
which TGFB family members regulate ROCK are still
unclear. The role of TGF-B signaling in regulating fat
browning is further supported by the pharmacological
studies of the activin receptor type IIB (ActRIIB), a type II
receptor that binds to multiple ligands from the TGF-f
superfamily such as the activin and BMP subgroups [106].
Administration of a soluble ActRIIB protein comprised of
a form of the extracellular domain of ActRIIB fused to a
human Fc (ActRIIB-Fc) leads to an induction of beige
adipocytes in epididymal WAT, yet the underlying mech-
anism is poorly defined [63].

Concluding remarks

Systemic homeostasis is achieved through coordinated
metabolic regulation among multiple tissues/organs. Being
no exception, the development and activation of beige
adipocytes are also controlled by signals derived from
various tissues/organs. Despite the recent explosion in our
understanding of such metabolic communication between
beige adipocytes and other tissues/organs, it is still a long
way to go to fully describe the contribution of each indi-
vidual tissue or organ to the browning process and how
beige adipocytes integrate these signals.

As we are gaining a better understanding of the induc-
tion of beige adipocytes, our knowledge concerning the
contribution of beige fat cells to energy expenditure and
whole-body metabolic homeostasis has also greatly
improved.

There is evidence that the function of beige adipocytes
in regulation of energy expenditure and thermogenesis
may be not entirely mediated by UCP1 [5, 15, 100].
Recently, beige adipocytes are shown to be able to utilize
creatine to stimulate mitochondrial respiration when ADP
is limiting [58]. These data suggest that creatine-driven
futile substrate cycle could be another important mecha-
nism of thermoregulation in beige adipocytes independent
of UCP1 [58].

In addition to generating heat and mediating energy
expenditure, mounting evidence suggests that beige adi-
pocytes also contribute to whole-body glucose and lipid
homeostasis. Adipocyte-specific expression of PRDM16 in
obese mice not only leads to increased beige fat mass and
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significantly reduced adipose mass, but also greatly
improves glucose tolerance [110]. Apart from subcuta-
neous adiposity, hepatic steatosis turns out to be the major
phenotype in mice with adipocyte-specific deletion of
PRDM16 [24]. Beige fat may also secrete molecules into
the circulation to improve glucose homeostasis. Recent
study reveals that mice transplanted with inguinal WAT
from exercise-trained mice show increased glucose and
fatty acid uptake than those receiving inguinal WAT from
sedentary or sham-treated mice [115]. These findings
indicate a potentially direct function for beige adipocytes in
reducing circulating glucose and fatty acids, independently
on its regulation of body weight. We need future studies to
address new functions of beige adipocytes and their regu-
latory circuits apart from thermogenesis.
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