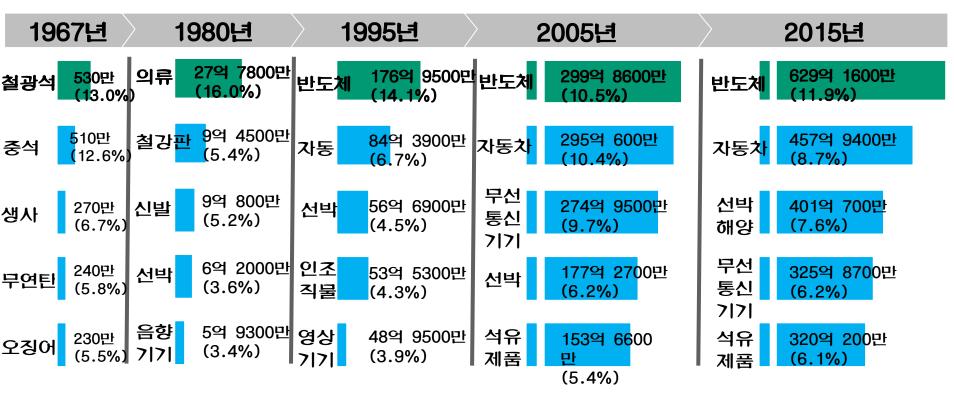
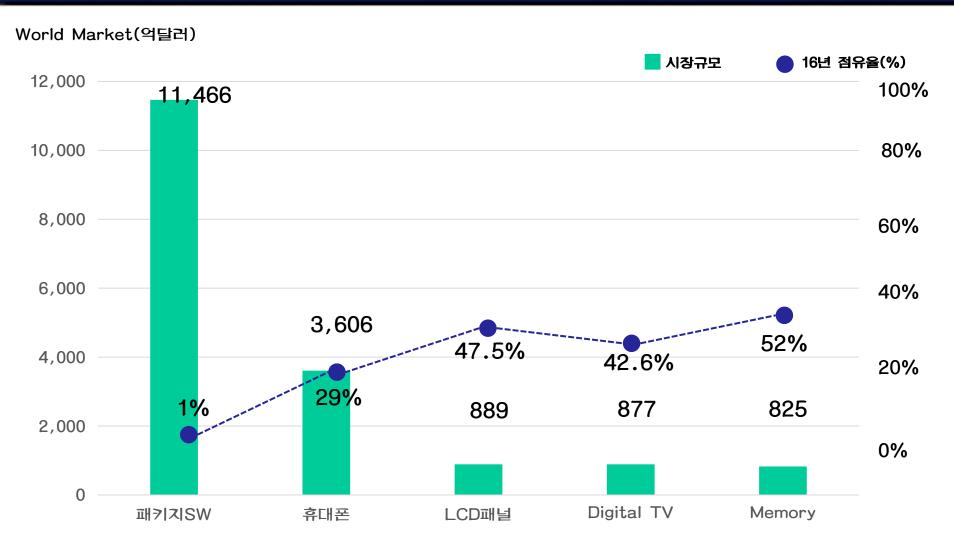

성장 패러다임



Fundamentals of Mobile Communications

농업사회


시대별 우리나라 수출 상위 5위 품목 수출액

(단위:달러, 괄호 안은 비중)

출처 : 한국무역협회

국내 IT 서비스의 세계 시장 점유율

출처 : 소프트웨어정책연구소

출처 : 디스플레이산업협회

IT 수출 현황 & 5대 주요 수출 품목

2016년 기준(단위: 백만

반도체	자동차	선박해양	무선통신기기	석유제품
62,288	40,637	34,268	29,664	26,472

국내 IT 개발의 미래

1980

1990

1996

2012

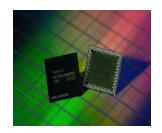
\$1,598

\$5,886

\$10,013

\$27,226

TDX


1.5천억원

7조원 ('89~'04)

DRAM

4천억원

128조원 ('91~'04)

CDMA

1천억원

7조원 ('96~'04)

IT융합



SONY / Samsung / Apple

SONY	Samsung	Apple	
글로벌 음향가전 시장의 지존	디지털 르네상스의 주역	융합시대의 아이콘	
진공관 라디오 트랜지스터 라디오 흑백 TV 칼라 TV	Analog Digital 브라운관 TV LCD TV	Device -콘텐츠 융합 하드-소프트 융합	
 CD (필립스와 공동 개발) 컬럼비아 영화사 인수 글로벌 미디어·디바이스 기업 	■ D램, LCD, 휴대전화 ■ 100-10 클럽 가입(2009)	■ 아이팟-아이튠즈 ■ 아이폰-앱스토어	
 네트워크 개념 부족 및 아날로그적인 사업 추진 (디지털 혁명 부족) 	■ 2010년 세계 최대 전자기업 등극 ■ 스피드 있는 디지털 Marketing ■ 4선(先)원칙-선견, 선수, 선제, 선점	■ 2010년 5월 시가총액 MS 초과 ■ 디자인과 기술을 융합한 창조성 확보	
Walkman	보르도 TV	iPhone, iPad	

주요 패러다임 변화

Platform

Software

Internet

Ubiquitous Convergence

세계 10대 기업(2017년)

Rank 2017: **7** 2016: **5**BV 2017: **\$ 65,875m**BV 2016: **\$ 63,116m**Brand Rating: **AAA**-

Rank 2017: 8 2016: 8

BV 2017: \$ 62,496m

BV 2016: \$ 53,657m

Brand Rating: AA+

9 Rank 2017: 9 2016: 17 ↑
BV 2017: \$ 61,998m
BV 2016: \$ 34,002m

■ Brand Rating: AAA

Rank 2017: **10** 2016: **13** ↑ BV 2017: **\$ 47,832m** BV 2016: **\$ 36,334m** + **32**%

Brand Rating: AAA

2018 가트너 전략기술 트렌드 주요 키워드

□ 가트너(Gartner) 란?

- ▶ 미국 코너테컷주에 본사를 둔 IT 분야의 리서치 기업.
- 다국적 IT 기업 및 각국의 정부기관 등을 주 고객으로 하며 설문 조사 부분의 높은 신뢰도로 공신력이 크다.
- ▶ 2018년 전략 기술 3대 주요 키워드
 - 지능형(Intelligent), 디지털(Digital), 매쉬(Mesh)

Intelligent	Digital	Mesh
Al Foundation	Digital Twin	Blockchain
Intelligent Apps and Analytics	Cloud to the Edge	Event-Driven
Intelligent Things	Conversational Platforms	Continuous Adaptive Risk and Trush
실(mesh) · 다양하 디지털 기기들이 더 초초8	Immersive Experience	

Fundamentals of Mobile Communications

2018 미래 기술(1)

인공지능 강화 시스템(Al Foundation)

- 인공지능은 의사결정의 정확성을 높이고 기존 비즈니스 모델과 생태계, 고객 경험을 재창조하여 2025년까지 기술 트렌드를 주도할 것으로 예측
- 여기서 인공지능은 공상과학영화에서 보던 인간 같은 로봇이 아니라 머신러닝 기술을 통해 특정 분야의 과업 에 특화된 협의의 인공지능을 의미

지능형 앱 및 분석(Intelligent Apps and Analytics)

- 향후 몇 년 동안 모든 응용 프로그램, 응용 프로그램 서비스들은 일정 수준의 AI를 포함하게 될 것으로 예상
- 가상 비서와 같이 어플리케이션과 사람 사이에 새로운 지능형 중간 계층이 형성되어 업무 현장의 구조를 변화시킬 것으로 예상

지능형 사물(Intelligent Things)

- 인공지능과 머신러닝을 사용하여 사람 및 주변환경과 보다 지능적으로 상호작용을 할 수 있는 사물의 의미
- 카메라 센서를 포함한 컴퓨터 비전(Computer Vision) 기술이 더해진 로봇 청소기가 사람의 개입을 최소화해 잡을 스스로 탐색하고 청소를 완료하는 것이 이에 해당함
- 미래의 지능형 사물은 융통성 없는 프로그래밍 모델의 실행력을 넘어 AI를 통한 고급 기능을 선보이며 인간, 주변환경과 환층 자연스러운 상호 작용을 할 것임

2018 미래 기술(2)

Digital

디지털 트윈(Digital Twin)

- 디지털 트윈은 '현실 세계에 존재하는 대상이나 시스템의 디지털 버전'을 의미, 디지털 트윈을 통하여 생성된 정보는 사물의 관리와 작동을 최적화하여 많은 비용을 절감할 수 있게 해줌
- Ex:도시계획자에서 시뮬레이션과 개선방향까지 제공, 의사에게 생체인식 및 의료 데이터 제공

클라우드에서 엣지로(Cloud to the Edge)

- 엣지 컴퓨팅(Edge Computing)은 정보처리와 콘텐츠 수집, 전송이 정보원(source)에 더 가까워지는 통신망 구성을 의미하며 중앙집중식의 기존 클라우드 컴퓨팅을 효과적으로 보완할 수 있음
- 통신대역폭을 줄이고 센서와 클라우드 사이의 대기 시간을 없애 차량, 무인항공기 등 방해한 정보를 실시간 으로 빠르게 처리할 수 있음

대화형 플랫폼(Conversational Platforms)

- 컴퓨터가 의사소통에 대한 학습 없이 사용자의 자연 언어를 사용하여 의도를 전달
- 현재 수준으로는 날씨 알림이나 식당 예약 같은 간단한 상호작용에 머물고 있지만 향후에는 특정 범죄에 대한 증언들을 바탕으로 용의자의 얼굴을 파악하는 등 보다 복잡한 업무에도 활용될 것으로 예층

몰입경험(Immersive Experience)

- 증강현실(AR), 가상현실(VR) 및 혼합현실은 사람들이 디지털세계를 인식하고 상호작용하는 방식을 변화시키고 있음
- 향후 5년간 현실세계 및 디지털세계와 상호작용하는 몰입경험은 스마트폰, 태블릿, 헤드마운티기기(HDM) 등에 폭넓게 적용될 것이고 어플리케이션 제조사, 시스템 소프트웨어 제조사, 플랫폼 기업 등이 치열하게 경쟁할 것으로 예상

2018 미래 기술(3)

블록체인(Blockchain)

- 블록체인이란 각 노드에 분산 저장된 장부의 데이터를 지속 업데이트하는 알고리즘이며, 거래정보의 임의 변경이 불가능해 거래 신뢰성을 높이고 정보 추적을 용이하게 함
- 현재는 금융영역에 국한되어 기술발전이 진행되고 있으나, 헬스케이, 콘텐츠 유통, 개인간 상품 거래 등 다양한 영역에 적용될 것으로 보임

이벤트 기반 모델(Event-Driven)

- '주문이 완료된 순간'과 같은 상태의 변화를 신속하게 포착하고 활요하는 기술의 의미
- 인공지능과 사물인터넷 등 다양한 기술의 발전으로 기업들은 보단 신속하고 세세하게 기회의 순간을 포착할수 있게 됨

지속적으로 적응할 수 있는 위험 및 신뢰 평가(Continous Adaptive Risk and Trust)

- 디지털 비즈니스에서는 복잡하면서도 지속적으로 진화하는 보안 환경이 필요함
- 디지털 비즈니스의 안정적 운영을 위해 지속적으로 적응 가능한 위험 및 신뢰평가법 개발이 필수임

4차 산업 혁명(1)

인류는 18세기 증기기관(1차 산업혁명), 19세기 전기(2차 산업혁명), 20세기 컴퓨터/인터넷(3차 산업혁명)이라는 기술 혁신으로 3차례의 혁명적 변화를 경험하였습니다. 4차 산업혁명은 정보통신기술을 바탕으로 한 3차 산업혁명의 연장선에 있지만 기존 산업혁명과는 확연히 구분됩니다. 1~3차 산업혁명이 인간의 손과 발을 기계가 대체하여 자동화를 이루고 연결성을 강화했다면 4차 산업은 인공지능을 통해 인간의 두뇌를 대체하게 될 것입니다.

1차 산업혁명

증기 기관을 통한 국가 내의 연결성 증가

- 기계의 발명으로 자동화 시작
- 공장 생산체제 도입

18세기

- 증기기관을 활용하여 영국의 섬유산업이 성장하자 농촌의 노동자들이 도시의 공장 노동자로 취업하는 이촌향도 현상 발생
- 전신기를 활용하여 편지 대신 전신을 보낼 수 있게 됨
- 1830년에 최초의 여객/화물 겸용 철도인 리버풀-맨체스터 간 철도가 개통되어 철도 시대 개막

2차 산업혁명

작업 표준화를 통해 기업 간, 국가 간 노동 부문 연결성 강화

- 컨베이어벨트를 이용한 작업 표준화와 분업을 통해 대량 생산 체제에 진입
- 전기 에너지 활용

20세기 초

- 에디슨이 발명한 백열전구를 통해 최초의 상업적인 전구 확산
- 석유왕 록펠러, 철강왕 카네기, 헨리포드 등이 모두 2차 사업혁명의 영웅

역사로 보는 산업혁명

3차 산업혁명

사람, 환경, 기계 간 연결성 강화

- 공작기계, 산업용 로봇을 이용한 공장 자동화로 생산성 혁명
- 전자장치와 ICT를 통하여 정보 처리 능력 급진적 발전

 인터넷이 활성화되면서 소비자들이 온라인상으로 음악을 공유하게 되면서 LP와 CD 업계는 매출 급락과 사업 축소를 경험

4차 산업혁명

인공 지능에 의해 자동화와 연결성 극대화

- 기존 공장 자동화에 투입된 기계, 로봇과 달리 기계가 능동적으로 판단해 작업 수행
- 기존 소품종 대량 생산의 속도에 맞춰 다품종 소량생산이 가능

2020년 이후 전망

- 알파고
 인공지능 컴퓨터 알파고(Alphago)가
 3천만 건의 기보를 자가학습하고
 1,200대의 컴퓨터를 인터넷으로
 실시간 연결하여 이세돌과 바둑게임 진형
- 네트워크를 통하여 연결된 수많은 컴퓨터가 방대한 소스로부터 생성된 데이터를 스스로 학습하여 판단을 내리는 시대 도래

자료: EU(2016), "다보스모함: 다가오는 4차 산업혁명에 대한 우리의 전략은 KISTEP, "제4차 산업혁명의 시대, 미래사회 변화에 대한 전략적 대용방안모색", 값원호(2016), "4차산업혁명, 마케팅 혁명의 길", 마케팅, 50(2), 9-16

R&D Kiosk 제40호 2017년 9월

Fundamentals of Mobile Communications

12

4차 산업 혁명(2)

4차 산업혁명으로 인해 일어날 변화

체내삽입형 기기 대폭 확산 전자문식, 새로운 유형의 칩, 인체 삽입형 스마트폰 등

사물인터넷 사회 1조 개의 사물 센서가 인터넷에 연결

.....

.....

.....

인공지능과 의사결정 기업과 정부 및 사회의 주요 의사결정에 인공지능 사용

자율주행자동차

도로 위 주행하는 자동차 중

도시의 모든 것을 모니터링하고 대응, 5만 명 이상이 거주해도 신호등이 없는 도시 가능

커테티드 홈

가정용 기기에 50% 이상의 인터넷 연결

누구나 무료 저장소 인구의 90%가 무한 용량 무료 저장소 보유

블록체인과 비트코인 전세계 GDP의 10%가 블록체인 기술에 저장

3D 프린팅과 제조업

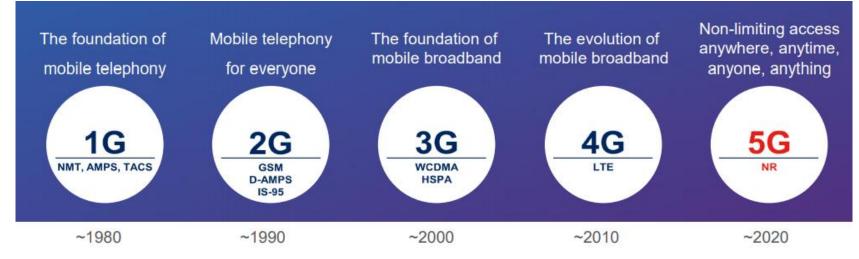
.....

1111111

3D 프린팅 제작 자동차 운행

3D 프린팅 제작 간 이식 가능

인구의 90%가 스마트폰(5G) 사용

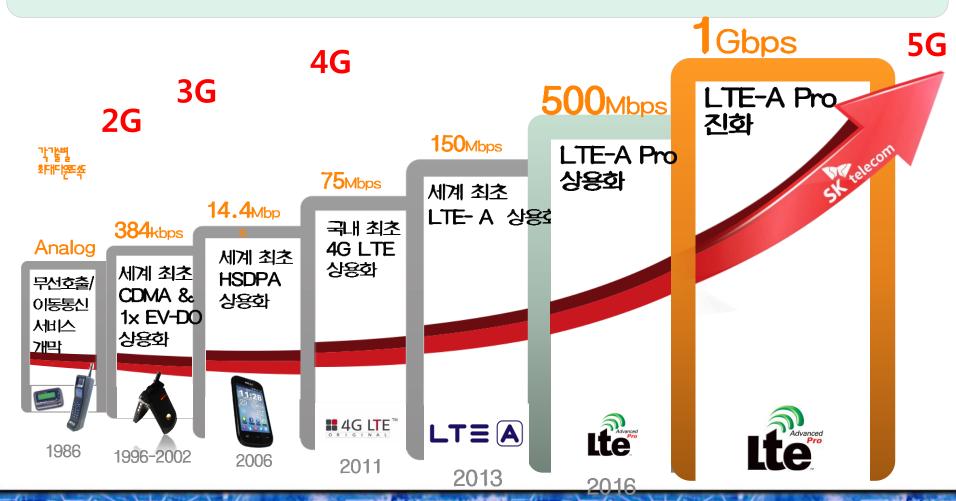

혁신성장동력 | 3대 분야

	<u>빅데이터(</u> D)	차세	대통신(N)	인공지능(A)	
지능화 인프라	<u> </u>	남용 5G, <u>J</u>	⊙ 상용화	AI 핵심기술 개발	
	자율주행차		<u>E</u> ,	드론(무인기)	
스마트 이동체	레벨3 자율주행		공공용 산업용 무인기 보급		
용합 서비스	맞춤형 헬스케어	스마트시티	가상증강현실	지능형로봇	
	개인맞춤 정밀의료 -□-	도시문제 저감	개별산업과 V.R./ 융합 ♣	AR 의료·안전용 서비스 로봇	
	지능형반도체	첨단소재	혁신신약	신재생에너지	
산업기반	AI용 반도체 개발	항공부품, 자동차 경량화	후보물질 100개 2	재생에너지 발전비중 확대 (*17 7.0%→ *22 10.5%→*30 20%)	

출처 : 과학기술정보통신부

5G 사회적·경제적 동향

Wireless Access Generations


Industry leaders in the development and delivery of networking, mobile, and cloud work together to create the networks of the future

Growth | Innovation | Speed

이동통신 시스템 진화

2G CDMA ('96, 14.4kbps), 3G EV-Do('02, 384kbps), HSDPA('06, 14.4Mbps), 4G LTE('11, 75Mbps), LTE-A('13, 150Mbps)를 거쳐 LTE-A Pro('16, 500Mbps) 서비스로 진화 중

4G vs 5G

	4G	5G
최대 전송속도	1 Gbps	20 Gbps
이용자 체감 전송속도	10 Mbps	100~1000 Mbps
주파수 효율성	_	4GEHH1 3HH
고속 이동성	350 km/h	500 km/h
전송지연	10 ms	1 ms
최대 기기 연결수	$10^5 / km^2$	$10^6 / km^2$
에너지 효율성	-	4GEHHI 100HH
면적당 데이터 처리	$0.1 Mbps/m^2$	$10 \text{ Mbps/}m^2$

출처 : 미래창조과학부