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ABSTRACT
In muscle cells, the sarcoplasmic reticulum (SR) not only acts as a Ca2+ store, but also regulates
the contractile characteristics of the muscle. Ca2+ release from the SR is the primary mechanism
for activating muscle contraction and reuptake of Ca2+ by the sarcoplasmic reticulum Ca2+ AT-
Pase (SERCA) pump causes muscle relaxation. The SERCA pump isoforms are encoded by three
genes, SERCA 1, 2, and 3, which are differentially expressed in muscle and determine SR Ca2+

dynamics by affecting the rate and amount of Ca2+ uptake, thereby affecting SR store and re-
lease of Ca2+ in muscle. In muscle, small molecular weight proteins, including Phospholamban
(PLB) and Sarcolipin (SLN), also regulate the SERCA pump. Regulation of the SERCA pump by PLB
or SLN affects cytosolic Ca2+ dynamics and changes in cytosolic Ca2+ not only affect contractile
function, but also mitochondrial ATP production. Recent studies have shown that alterations in
cytosolic Ca2+ affects Ca2+ entry into mitochondria and ATP production; thus, Ca2+ serves as
an integrating signal between muscle contraction-dependent energy demand and mitochondrial
energy production. In addition, changes in cytosolic Ca2+ can affect Ca2+ signaling pathways
modulating gene expression and muscle growth. An emerging area of research shows that SR
Ca2+ cycling is also a player in muscle-based nonshivering thermogenesis. Recent data shows
that SERCA uncoupling by SLN leads to increased ATP hydrolysis and heat production. Our stud-
ies, using genetically altered mouse models of SLN, show that SLN/SERCA interaction plays an
important role in muscle thermogenesis and metabolism, which will be discussed here, in great
length. © 2017 American Physiological Society. Compr Physiol 7:879-890, 2017.

Introduction
Skeletal muscle is the largest organ in the body, representing
∼40% of body mass, and participates in many physiologi-
cal functions of the body (57). Much of the early research
has been focused on muscle as a contractile organ which led
to the characterization of skeletal muscle fibers as fast gly-
colytic, fast oxidative, and slow-twitch muscle with different
contractile kinetics expressing different sets of myosin iso-
forms (50,82,104-106). These skeletal muscle fibers also have
different metabolic characteristics and have the ability to uti-
lize a large amount of fuel when activated. There is increasing
evidence that skeletal muscle is more than contractile machin-
ery; it can also contribute to muscle thermogenesis through
both shivering and nonshivering mechanisms (4, 8, 9, 100).
Skeletal and cardiac muscle are powerhouses; together they
consume a significant amount of energy in the body on a daily
basis. Skeletal muscle, for example, consumes nearly 80% of
available glucose and can easily switch to utilize fatty acids,
ketones, and amino acids; thus, it has enormous flexibility in
substrate oxidation (41, 61). Therefore, muscle is also con-
sidered to be an important regulator of basal metabolic rate,
whole body energy expenditure, and metabolism (134). Mus-
cle can increase its energy expenditure 20- to 30-fold during
intense exercise and continued exercise can exhaust all of
the fat reserve. Many studies suggest that enhancing energy

expenditure in muscle through physical activity could be the
most effective strategy for controlling obesity and diabetes,
second only to caloric restriction (125). Although increased
physical activity through exercise is the most preferred way
to increase energy expenditure, it is often difficult to enforce
and maintain; therefore, we may need to explore alternate
mechanisms that could be targeted to activate energy expen-
diture in muscle and other organs. In striated muscle, the
contractile protein machinery and ion transport by the SR
membrane network are the central players in energy expendi-
ture (4, 10, 92). Studies in our laboratory have been focused
on understanding the role of SR Ca2+ ion transport in muscle
metabolism/energy expenditure. The purpose of this review is
to highlight the role of SR Ca2+ cycling, especially the role of
sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump activ-
ity in muscle nonshivering thermogenesis and metabolism.
In this review, we will discuss recent advances in our
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understanding of the SERCA pump activity by a small protein,
namely, Sarcolipin (SLN) and its role in muscle nonshivering
thermogenesis and energy metabolism (9).

Sarcoplasmic Reticulum Structure
and Function
In striated muscle, the SR is unique and highly specialized;
it is an elaborate intracellular membrane network organized
as discreet units along the sarcomere (12). The SR membrane
network interdigitates with T-tubular systems that originate
from the plasma membrane and together, they regulate Ca2+

movements during muscle contraction and relaxation (16,44).
Unlike cardiac muscle, skeletal muscle has well developed
SR and T-tubular systems that depend on motor neurons for
excitation-contraction coupling. Direct coupling of the dihy-
dropyridine receptor (DHPR) to the ryanodine receptor (RyR,
SR Ca2+ release channel) regulates the release of Ca2+ from
the SR (13). Cardiac and skeletal muscles express unique iso-
forms of these channels and they show both structural and
functional differences. The skeletal muscle DHPR is unique
in that it has the ability to physically couple and activate RyR1
in a voltage-dependent manner; whereas the cardiac L-type
Ca2+ channel communicates indirectly through Ca2+ induced
Ca2+ release (45,93). Likewise, cardiac and skeletal muscles
express different isoforms of luminal SR proteins that include
triadin, junctin, and calsequestrin (CASQ) (132). In the rest-
ing state of the myofiber, Ca2+ concentrations in the cytosol
are maintained between 50 and 100 nmol/L. The Ca2+ cycle
starts with a surface membrane and transverse tubular (T sys-
tem) depolarization leading to a release of Ca2+ from the SR
via the ryanodine receptor (RyR) that elevates cytosolic Ca2+

locally to ∼100-fold higher levels (72,91). SERCA is respon-
sible for transporting Ca2+ into the lumen of the SR and is
the most abundant protein in the SR (Fig. 1). Both SERCA
1 and 2 isoforms are expressed in skeletal muscle, while car-
diac muscle expresses primarily the SERCA 2a isoform. The
Ca2+ removal is also facilitated by the plasma membrane
Ca2+ ATPases (PMCAs) and Na+/Ca2+ exchangers (91). In
comparison to fast-twitch skeletal muscle, Ca2+ handling in
slow-twitch muscle promotes slow, sustained contractions as
found in postural muscle. The Ca2+ uptake activity of SERCA
pump is influenced by Phospholamban (PLB) and SLN in both
cardiac and skeletal muscle (72, 91, 108).

The Role of SERCA Pump Isoforms
in Muscle Physiology
The SERCA pump belongs to the family of P-type ATPases
that includes PMCA, Na+/K+ ATPase and H+/K+ ATPase
(21, 118). The SERCA pump is a single polypeptide con-
sisting of 110kDa and is localized in the SR membrane. A
notable feature of P-type ATPases is the transfer of terminal
phosphate from ATP to an aspartate residue in the catalytic

Figure 1 The role of sarcoplasmic reticulum in muscle excitation-
contraction coupling. The SR in muscle is a highly specialized organelle
and serves as a Ca2+ store. Ca2+ release and uptake by the SR
is primarily responsible for contraction and relaxation of the muscle.
The major SR Ca2+ cycling proteins include the Ca2+ release chan-
nel also known as ryanodine receptor (RYR), SERCA pump, Na+/Ca2+

exchanger, and voltage gated L-type Ca2+ channel. These proteins reg-
ulate Ca2+ release and removal during muscle contraction and relax-
ation (12). The SERCA pump isotype and relative protein content is an
important determinant of SR Ca2+ load, release, and uptake in fast-
twitch (SERCA1a) versus slow-twitch (SERCA2a) muscle. The SR and
mitochondria are interdependent and changes in cytosolic Ca2+ can
also affect mitochondrial energetics.

domain, resulting in a reversible conformational change. P-
type ATPases couple the hydrolysis of ATP to the movement
of ions across a biological membrane (87, 88, 112, 117, 120-
123). The SERCA pump utilizes the energy derived from ATP
hydrolysis to transport Ca2+ against a Ca2+ gradient across SR
membranes. The mechanism of the coupling process is such
that two Ca2+ ions are transported for each molecule of ATP
hydrolyzed. During this course of action, a portion of chemi-
cal energy is released as heat. Structurally, SERCA is a single
polypeptide chain with a transmembrane region (TM) and
a large cytoplasmic region, composed of three domains, the
nucleotide or ATP binding (N)-domain, the P-domain which
gets phosphorylated with the γ-phosphate of ATP and the
actuator (A)-domain which coordinates de-phosphorylation
(80, 118). These TM regions consist of 10 α-helices (M1-
M10) of varying lengths and are in association with highly
mobile cytosolic domains. The SERCA isoforms are encoded
by three different genes; SERCA 1, SERCA 2, and SERCA
3 (Table 1) (91). SERCA 1 is expressed primarily in fast-
twitch skeletal muscle and is alternatively spliced to encode
SERCA 1a (994aa, adult) and 1b (1011aa, neonatal). SERCA
2 encodes SERCA 2a (997aa), which is expressed predomi-
nantly in cardiac and slow-twitch skeletal muscle and SERCA
2b (1042aa), which is expressed in all tissues at low levels,
including muscle and nonmuscle cells. SERCA 3 isoforms
are expressed in several nonmuscle tissues but appear to be a
minor form in muscle (91). An important feature associated
with different SERCA isoforms is that their primary structure
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Table 1 The SERCA Pump Isoforms Are Encoded by SERCA1, 2, and
3 Genes

Skeletal muscle
SERCA
isoforms

Cardiac
muscle

Fast
twitch

Slow
twitch

Nonmuscle
cells

SERCA 1a None Yes None None

SERCA 1b None Yes None None

SERCA 2a Yes Yes Yes None

SERCA 2b Yes Yes Yes Yes

SERCA 3a None None None Yes

SERCA 3b None None None Yes

SERCA 3c None None None Yes

SERCA1a is the most abundant isoform and expressed in adult fast-
twitch skeletal muscle; SERCA1b is expressed in neonatal stages of
muscle development. SERCA2a is predominantly expressed in cardiac
muscle and as well in neonatal and adult slow-twitch skeletal muscle.
SERCA2b is ubiquitous and found in most cell types. SERCA 3a, 3b,
and 3c are absent in muscle but expressed in many nonmuscle cells
including, lung, kidney, spleen, intestine, pancreas, cerebellum, and
platelets (91).

is highly conserved and various domains can be exchanged
between SERCA 1 and SERCA 2 isoforms without affect-
ing function. SERCA 1 bears structural homology up to 84%
with SERCA 2a and 75% to SERCA 3. Due to this similar-
ity in their native primary structure, all SERCA isoforms are
predicated to have the similar transmembrane topologies and
tertiary structures. SERCA expression is not only tissue spe-
cific, but also undergoes developmental regulation, including
switching of isoforms, which represents an important phe-
notypic change in muscle maturation. SERCA 1a isoform
predominates in muscle fibers with faster contractile char-
acteristics whereas SERCA 2a seems to be characteristic of
slow and cardiac muscle. Fast-twitch muscle expresses three-
fold to fourfold higher SERCA level (SERCA1a) compared
to slow-twitch muscle that expresses SERCA 2a protein. The
SERCA protein level and isotype determines the properties of
muscle SR and correlates with muscle contractile speed and
relaxation.

Skeletal Muscle Is Also a
Heat-Generating Organ
Skeletal muscle has been appreciated as a major site of cold-
induced thermogenesis through shivering and nonshivering
thermogenesis (15, 28, 65, 109, 127). Shivering, a form of
repetitive contraction of muscle is the first line of defense
against exposure to acute cold environments that produces
large amounts of heat, but at the expense of a lot of energy.
Prolonged shivering can lead to muscle fatigue and exhaustion
as it primarily relies on glycolysis for ATP supply; it can also

severely compromise survival of the animal in the wild habitat
(26,30,49). Several studies suggest that shivering cannot con-
tinue for a very long time and needs to be replaced through
nonshivering thermogenic (NST) mechanisms (7, 48, 115).
During prolonged cold adaptation, it has been consistently
shown that skeletal muscle also serves as an important site of
NST (38,59,114,133). Shivering starts to reduce after 2 days
of cold challenge and no visible shivering is observed after 4
days. Predominant use of rodents (mice and rats) as experi-
mental animals has often neglects the role of skeletal muscle in
NST, as rodents rely on brown adipose tissue (BAT), a highly
specialized organ enriched with mitochondria, as the major
site of NST (23,24,39,75,131). This is largely because rodents
are endowed with BAT and BAT-based thermogenesis plays a
dominant role in temperature homeostasis even during adult-
hood (23, 24, 39, 75, 131). In large mammals, however, BAT
content decreases during development; it becomes a minor
component or is often inactive in adult stages especially in
large animals including humans (22,25,64,66). Furthermore,
it is either absent or inactive in some endotherms, even in
certain mammals such as wild boars and domesticated pigs
(11, 84). In addition, birds that maintain a higher body tem-
perature than mammals, do not contain BAT altogether and
they rely on muscle-based thermogenic mechanisms for their
core body temperature (Tc) maintenance.

Heat generation from muscle contractility through shiv-
ering and/or exercise is well known (28, 40). However, the
precise cellular mechanism skeletal muscle utilizes to heat
through NST has been controversial (109, 114). In fact, sev-
eral articles have cited skeletal muscle as an important site of
NST but often cannot distinguish if this was occurring as a
result of muscle activity or independent of muscle contraction
(33-35). There is experimental evidence that Ca2+ cycling
and SERCA activity can also contribute to heat production
in muscle and support thermogenesis in many endothermic
vertebrates (33, 62). This is best known from the studies car-
ried out on the “heater organ”: a modified extraocular mus-
cle found in deep sea fish, for example, Tuna. The heater
organ is composed of cells that lack the typical myofibril-
lar lattice but, instead are densely packed with mitochondria
and SR networks. The SR of heater organs is organized into
tightly packed stacks of vesicles, which optimizes surface area
for SERCA expression/localization (17,67,81,85). These SR
vesicles express a Ca2+ release channel (CRC) that is dis-
tributed homogeneously throughout with calsequestrin being
abundantly located inside the SR lumen.

The role of SR Ca2+ cycling in heat production was also
supported by a disease, Malignant Hyperthermia (found in
pigs and man), where excessive Ca2+ leaks from RyR cou-
pled with chronic SERCA activation leading to pathological
heat production (20, 56, 60, 96, 97, 126). While this is primar-
ily due to a mutation in the RyR1 protein that results in an
uncontrolled Ca2+ leak from the SR following an exposure to
anesthetics, it signifies how incessant Ca2+ cycling can lead
to abnormal heat production. Many recent studies also sug-
gested that muscle adaptation to cold was often associated
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Figure 2 Comparison of SLN, DWORF, MLN, and PLB protein sequences in mouse. SLN is 31 AA long with 7 unique
cytosolic residues and a highly conserved C-terminus (RSYQY) across different species including humans and rodents.
These proteins share homology only in the transmembrane region but have unique cytosolic and lumenal residues. PLB is
the largest, it is 52 AA long, and has an extended cytosolic domain of 30 AA containing phosphorylation sites at Ser16
and Thr17(74). The mechanism of interaction with SERCA has been extensively studied for PLB and SLN but the details
regarding DWORF and MLN interaction are not known.

with increased RyR1 and SERCA expression in birds and
mammals, thus, implying that SR Ca2+ transport can be an
important contributor to heat production in muscle; however,
the mechanistic basis for the recruitment of SR Ca2+-cycling
independent of muscle contraction remained poorly under-
stood. The role of SR Ca2+ transport in NST has been strength-
ened by the identification of SLN, a novel regulator of SERCA
as described below (9, 90, 99-100, 103).

Regulation of SERCA Activity by Small
Molecular Weight Proteins
The SERCA pump activity in muscle is regulated by small
proteins, such as PLB, SLN, more recently identified myoreg-
ulin (MLN) and dwarf open reading frame (DWORF)
(3, 72, 83, 108) (Fig. 2). These small proteins are differen-
tially expressed in muscle, and regulate SERCA isoforms
differently. Data shows that PLB primarily interacts with
SERCA2a, whereas SLN regulates both SERCA 1 and 2 iso-
forms (91). On the other hand, PLB does not bind nor affect
SERCA3a activity (116). DWORF can bind to all the three iso-
forms of SERCA (83). PLB, SLN and MLN share a conserved
hydrophobic motif in the TM region rich in Leucine residues
that provide interaction surface for binding to SERCA. The
importance of this hydrophobic TM region was studied by
peptide reconstitution by Afara et al. This study revealed
that a uniform hydrophobic peptide can alter the apparent
SERCA pump affinity for Ca2+, with a length requirement
that is similar to WT PLB (1). The role of PLB as a regu-
lator of cardiac muscle physiology is well established; PLB
binding to SERCA decreases the pump affinity for Ca2+ but
this inhibitory interaction is relieved upon phosphorylation or
elevated cytosolic Ca2+ concentration. Thus, PLB serves as a
force frequency modulator of heart function and is the princi-
ple mediator of the β-adrenergic response of the heart (63,70).
Many studies using mouse models highlighted the role of PLB
in cardiac pathophysiology and numerous excellent reviews
have been published on this topic, so it will not be discussed
in detail here (72). On the other hand, the physiological rele-
vance of SLN is still an emerging area of research. SLN is a
small protein, composed of 31 amino acids, and is primarily
expressed in striated muscle; not in smooth muscle or any

other cell type (5,14). Interestingly, SLN expression is devel-
opmentally regulated in rodents; it is abundant in fetal and
neonatal skeletal muscles but gradually becomes restricted
to slow-twitch oxidative muscle fibers, such as those in the
soleus and diaphragm muscles, in adult rodents (5). In car-
diac muscle, SLN is relatively abundant in the atrial muscle
compared to ventricles (5). In comparison to rodents, SLN
is expressed several fold higher in both fast and slow-twitch
muscles in larger adult mammals, such as rabbits, dogs, and
humans. MLN, a newly identified regulator of SERCA, is
found to be expressed in fast-twitch skeletal muscle encoded
by skeletal muscle-specific RNA annotated as a putative long
noncoding RNA. MLN is 46 amino acids long and interacts
with SERCA, inhibiting its function (3, 83). Genetic ablation
of MLN improves exercise performance. Recently, another
34 amino acid peptide was identified and named DWORF.
It is encoded by a putative muscle-specific long noncoding
RNA and expressed primarily in the ventricles and soleus of
mice. Genetic manipulation studies suggested that DWORF
activates SERCA pump and increases muscle contractility in
the heart by displacing PLB (83). The detailed mechanism
of MLN and DWORF interaction with SERCA is currently
under investigation and their physiological roles need to be
better defined.

SLN Uncouples SERCA Pump from
Ca2+ Transport
The mechanism of SLN interaction with SERCA has been
investigated both by our group and others (Fig. 3) (9, 73,
102, 103, 108). Using protein cross-linking, we were the
first to report that monomeric SLN binds to the transmem-
brane groove of SERCA in a Ca2+-dependent manner and
this finding was subsequently confirmed by SERCA/SLN co-
crystals developed by Drs. Nissen and Toyoshima’s laborato-
ries (119, 129). Furthermore, we showed that the characteris-
tics of SLN binding to SERCA are quite different from PLB,
a well-known inhibitor of SERCA. PLB binds to Ca2+ free
SERCA states and is out-competed by Ca2+binding; there-
fore, binding of PLB and Ca2+ with SERCA are mutually
exclusive (9, 102, 103). On the other hand, SLN can bind to
Ca2+ bound SERCA states and this can be detected even at
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Figure 3 Distinct interaction and regulation of SERCA by SLN and PLB. SLN and PLB binding to SERCA as detected by
protein cross-linking in the presence of different concentration of Ca2+. (A) SLN is able to bind to SERCA even at high Ca2+

whereas PLB binding to SERCA is competed out by increasing Ca2+, indicating that binding of PLB and Ca2+ are mutually
exclusive. (B) SLN remains bound to SERCA pump during Ca2+ transport (binds to different SERCA kinetic states, that is,
E2, E1, E1pCa2, and E2P) and PLB only binds to Ca2+ free SERCA pump (103). (C) Ca2+ uptake assay profile shows
that SLN decreases the Vmax of SERCA Ca2+ transport by uncoupling. (D) SLN does not inhibit SERCA ATPase activity. PLB
inhibits SERCA ATPase activity but has no effect on Vmax of Ca2+ uptake. Adapted from Sahoo et al. JBC (103).

high Ca2+ (9,102,103). SLN binding does not affect SERCA
ATPase activity, but decreases the net (Vmax) Ca2+ uptake
(Fig. 3). A notable difference is that SLN remains bound to
SERCA during the entire kinetic cycle in the TM-groove.
The presence of SLN in the TM groove interferes with Ca2+

transport into the lumen of SR, instead causing the slippage
of Ca2+ back to the cytosol. PLB binding inhibits SERCA
pump activity, whereas the binding of SLN to SERCA causes
uncoupling of the SERCA pump from Ca2+ transport. This is
a novel finding showing that SLN can promote futile cycling
of SERCA at the expense of increased ATP hydrolysis and
increased heat production in muscle. These studies led to the
proposal that uncoupling of SERCA activity by SLN may
play an important role in muscle thermogenesis (8, 9, 99).

SLN is Important for Muscle
Thermogenesis
The physiological relevance of SLN was unknown and
remained quite speculative for some time. It was thought
that SLN was similar to PLB in function. To establish if
SLN was important for Ca2+ homeostasis and muscle func-
tion, we developed a SLN−/− mouse model (6). Ablation of
SLN did not affect survival or muscle growth and the mice
were indistinguishable from WT controls (6). In addition,
loss of SLN did not significantly modify Ca2+ cycling, nor
did it have any detrimental effect on muscle function (6,124).

With this model, we investigated if the mice would adapt to
cold exposure given that SLN was proposed to play a role
in heat production through uncoupling of SERCA activity.
The SLN−/− mice, when housed at 22◦C, were able to repro-
duce well and maintain their body temperature ∼37◦C (9). It
is important to highlight that in mice, BAT, via UCP1-based
heat production, is an important contributor to thermogene-
sis (23). Adult mice possess a major BAT depot (∼70% of
total BAT) located between the two scapulae, called the inter-
scapular BAT (iBAT). To study the importance of muscle-
based thermogenesis, it was necessary to surgically remove
the iBAT. When challenged at 4◦C, the iBAT-ablated WT
mice were cold sensitive but were still able to maintain body
Tc (Fig. 4). In contrast, the iBAT-ablated SLN−/− mice were
unable to maintain body temperature and subsequently devel-
oped hypothermia. A body Tc of ∼25◦C was reached within
6 hours of the cold challenge and the mice had to be removed
to avoid cold-induced death (9). These studies suggest that
SLN is an important player in muscle-based thermogenesis
and whole body Tc regulation.

Although BAT is a dominant thermogenic mechanism in
rodents, several studies have suggested other mechanisms of
heat production. Rodents are unique in that they have high
BAT content and rely primarily on BAT for their NST and tem-
perature homeostasis. However, most large mammals, includ-
ing humans, have little BAT tissue in adult life. Therefore, the
relevance of BAT in large mammals is under debate. In addi-
tion, the predominant use of rodents as experimental animal
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Figure 4 SLN plays a role in muscle thermogenesis. (A) Infrared imaging of surface body heat in WT and Sln−/− mice with or without
iBAT at 22◦C and 4◦C. (B) Core body temperature after acute cold exposure in WT and Sln−/− mice, with and without iBAT. (C) Percentage
of mice reaching ERC (early removal criteria) (10). The mice were removed from cold when body Tc reached 25◦C. All data are means ±
S.E.M. Adapted from Bal et al. Nat Medicine (9).

models has often neglected the importance of alternate ther-
mogenic mechanisms. However, there is increasing evidence
for the existence of BAT-independent sites of thermogenesis
in mammals. This has become especially obvious from stud-
ies on large mammals that have limited BAT, as well as from
UCP1-knockout (UCP1-KO) mice. It has been shown that
UCP1-KO mice are extremely sensitive to acute cold expo-
sure, but they can be gradually adapted to 4◦C (13,14) which
argued that there must be alternate mechanisms to support
thermogenesis when BAT is nonfunctional.

In a recent study, Bal et al. went on to further investigate
if skeletal muscle-based NST could become hyper recruited
when BAT activity is compromised by iBAT ablation in adult
mice (8). This study showed that the iBAT-ablated mice were
able to maintain body temperature even when they were
shifted directly from 22◦C to 4◦C. The iBAT ablated mice-
induced substantial remodeling of SR proteins, including the
upregulation of SLN, SERCA2a and increased phosphoryla-
tion of RyR1, as evidence for the increased recruitment of SR
Ca2+ cycling as the basis for NST in muscle (8). In compar-
ison, the sham-operated animals showed a lesser remodeling
of SR proteins during cold challenge. In addition, there was
an increase in mitochondrial ETC proteins and oxidative
metabolism in their skeletal muscles, as evidence for recruit-
ment of NST in the skeletal muscle. Similarly, the UCP1-KO
mice could be gradually cold-adapted to 4◦C without any
adverse effects; however, these mice showed an increase

in SLN expression and upregulation of muscle-based NST
(99, 101). Collectively, these studies suggested that skeletal
muscle can substitute for the loss of BAT function and is ener-
getically more costly as observed in iBAT-ablated mice that
exhausted their fat depots compared to sham controls. Inter-
estingly, most large mammals, including humans, have little
functional BAT but express high levels of SLN, which suggest
that these large mammals must depend on muscle-based NST
when their BAT activity is diminished during development.

SLN is an Important Regulator of Energy
Metabolism and is Recruited in
Diet-induced Thermogenesis
Skeletal muscle is a major consumer of metabolites, including
glucose and fatty acids, and is an important regulator of whole
body metabolism and energy homeostasis (134,135). Muscle
heat production involving both shivering and NST must
involve significant energy demand. The importance of SLN
on muscle metabolism has been investigated by challenging
both SLN−/− and SLNOE mice (overexpressing SLN in all
skeletal muscle tissues) by high fat diet feeding for a period of
12 weeks (9, 19, 76, 77). Interestingly, SLN−/− mice became
significantly more obese when compared to WT controls;
the obesity phenotype in SLN−/− was associated with poor
glucose tolerance, an early sign of Type 2 diabetes (Fig. 5).
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Figure 5 SLN plays an important role in whole body metabolism and obesity. Mice were fed on HFD for 12 weeks. (A and B) SLN-/- mice
show significant increase in body weight. (C) MRI images showing body fat distribution in WT and Sln−/− after high fat diet feeding. (D)
SLN protein level is increased in HFD-fed WT–Soleus. n = 4. (E) Overexpression of SLN provides resistance against diet induced obesity. (F)
SlnOE mice consumed more calories than WT during HFD feeding. All data are means ± S.E.M. Adapted from Bal et al. Nat Medicine and
Maurya et al. JBC (9,76).

In contrast, WT mice were found to be less obese with upreg-
ulated SLN expression levels in skeletal muscles. It is sur-
prising that the diet-induced obesity was not protected by the
presence of BAT in SLN−/− mice. These studies suggest that
loss of SLN in muscle is sufficient to cause decreased energy
expenditure which overtime may lead to greater fat deposition
and obesity (9, 19).

To further confirm that SLN was indeed responsible for
the altered metabolism, Maurya et al. addressed if increas-
ing SLN expression would lead to an increased metabolic
rate using a mouse model that overexpresses SLN (under
the control of the skeletal muscle α-actin promoter) in all
skeletal muscle tissues (76). It must be noted that increased
SLN levels had no adverse effect on muscle contractility and
performance. The SLNOE mice mimic a larger mammal in
SLN expression pattern and express ∼10-fold higher levels
of SLN in skeletal muscles. These mice were also found to
have a higher food intake when fed ad libitum. Interestingly,
when SLNOE mice were pair-fed along with SLN−/− mice,
the SLNOE mice lost body weight and most of their white
fat content compared to WT and SLN−/− mice. These studies
suggested that the level of SLN expression could affect energy
expenditure and basal metabolic rate. It remains to be seen,
however, if this is also true for larger mammals. Interestingly,

when the SLNOE mice were fed on HFD for 12 weeks, they
were more resistant to weight gain and were significantly less
obese than their WT counterparts, despite consuming more
calories. Furthermore, it was noted that the energy expen-
diture of SLNOE mice was significantly higher during the
night (active phase of mice). In addition, higher oxygen con-
sumption was also observed in isolated muscle samples from
these mice. An important finding is that the SLNOE mice did
not exhibit any metabolic abnormalities associated with diet-
induced obesity, including glucose intolerance and hyperlipi-
demia. Remarkably, the SLNOE mice fed on HFD showed a
striking increase in mitochondrial content, especially in fast
glycolytic skeletal muscles like the tibialis anterior (TA) and
extensor digitorum longus (EDL). Mitochondria in SLNOE

muscle were also larger with intricate and densely packed
cristae. Further, the fast-twitch muscle TA from SLNOE mice
showed a higher oxidative capacity compared to that of SLN-
KO muscle. In addition, SLN overexpression increased the
expression levels of key transcriptional regulators (PPARδ,
PGC1α and NRFs) involved in mitochondrial biogenesis and
several genes involved in fatty acid oxidation. These novel
findings suggest that SLN is an important regulator of muscle
metabolism and plays a role in diet overload-induced adap-
tive thermogenesis. Further work is necessary, however, to
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document how SLN is recruited during diet-induced thermo-
genesis and if this involves diet-induced alterations in neuro-
hormonal signaling mechanisms.

The Role of SR-Mitochondrial Cross Talk
in Energy Metabolism
In skeletal muscle, mitochondria exist within the I-band, adja-
cent to Ca2+ release units at the A-I band junctions and within
the intermyofibrillar space (43, 98). Some studies have sug-
gested that there is physical coupling between the SR and
mitochondria (2,29,42,110). While this is a possibility, mito-
chondria can also sense and take up cytosolic Ca2+ through
the mitochondrial uniporter (MCU) and Voltage-dependent
anion channel (VDAC) (47, 74, 89, 94, 128). Several recent
studies have shown that mitochondrial Ca2+ oscillates with
cytosolic Ca2+ release and removal (27,68,86). Ca2+ release

from the SR is primarily responsible for the dynamic changes
in cytosolic Ca2+ during rest and exercise (36, 55, 95, 107).
Changes in cytosolic Ca2+ serve not only as a signal for
muscle contraction but also for mitochondrial metabolism
(18,37,46,53,54,58,71,78,113). It is known that changes in
cytosolic Ca2+ during rest versus exercise can be decoded by
each individual mitochondrion to adjust to the local metabolic
demand. The presence of SLN can further enhance this SR-
mitochondrial cross-talk by altering cytosolic Ca2+ dynamics
and increasing Ca2+ entry into the mitochondria. Interest-
ingly, studies conducted on the SLNOE mouse model suggest
that SLN overexpression is beneficial to muscle physiology;
that is, higher levels of SLN promote whole animal endurance
capacity and energetics (111). These studies show that SLN
overexpression enhances fatigue resistance in fast and slow
isolated muscles without compromising force during isomet-
ric conditions. This is a novel finding which suggest that
increasing SLN expression/activity has primed the muscle
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to respond to increased metabolic demand without causing
a switch in muscle fiber type (111). These studies suggest
that during prolonged muscle activity, such as in exercise, an
increase in cytosolic Ca2+ can serve as a metabolic signal and
increase oxidative capacity through activation of metabolic
enzymes that are Ca2+ sensitive, and this can boost ATP syn-
thesis during high demand. It has been consistently shown that
changes in Ca2+ dynamics in specific cytosolic compartments
can activate powerful Ca2+-dependent signaling pathways,
involving kinases and phosphatases. It is well established that
activation of CAMKII and calcineurin can result in spiraling
cascades of signaling resulting in the activation of a variety of
nuclear and mitochondrial transcription regulators to increase
mitochondrial biogenesis during high energy demand states
(31, 32, 51, 52, 69, 79, 130). Thus, we propose that SLN acts
as an enhancer of oxidative metabolism and can serve as an
attractive target to increase energy metabolism in sedentary
individuals (Fig. 6).

Conclusion
Skeletal muscle is the largest organ in the body and can con-
sume significant amounts of energy on a daily basis. It is a
key determinant of basal metabolic rate and has the ability
to exhaust the body’s energy sources, including fat depots,
during intense activity. Despite this ability, obesity is increas-
ing at an alarming rate across the globe and is considered
to be the major contributor to the increase in diabetes, coro-
nary heart disease, cancer, and neurological diseases that are
burdening the health care system. Obesity results from an
energy imbalance; largely due to increased consumption of a
caloric-rich diet and limited physical activity due to change in
life style. There are no effective treatments to reduce obesity
other than caloric restriction and exercise which are difficult
to enforce on a daily basis. It is imperative that we iden-
tify mechanisms and targets to increase energy expenditure
pharmacologically as this will become critical under condi-
tions where physical activity may be limited. The discovery
of SLN as an uncoupler of the SERCA pump is a promising
target to increase energy expenditure in muscle. Our stud-
ies showing that increasing SLN expression/activity can be
beneficial to muscle metabolism are a significant finding and
encourage us to continue to explore this as a possible target
for therapeutics. However, there are still many unanswered
questions when it comes to SLN: (i) its exact mechanism
of interaction and how it uncouples SERCA activity, (ii) if
SLN uncoupling of SERCA is sufficient to cause increased
energy demand and activation of mitochondrial metabolism
or is there a need for an external signal such as cold, (iii) and
most importantly, if this mechanism can be effectively tar-
geted using small molecules to increase energy expenditure
in humans. Despite these outstanding questions, skeletal mus-
cle represents the most attractive target due to its enormous
capacity to affect metabolic rate quickly and efficiently. Even
adjunct therapy with exercise could be an effective way to

increase energy expenditure and regulate whole body energy
metabolism. Future research should aim at discovering mech-
anisms that increase basal metabolism as well as discovering
small compounds that could increase muscle metabolism sev-
eral folds.
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