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Brown fat thermogenesis is primarily
driven by the sympathetic nervous
system.

Multiple hypothalamic nuclei are cru-
cially involved in regulating brown fat
activity. This underscores the physio-
logical importance of brown fat for the
body.

Cold exposure increases rodent and
human brown fat activity, an effect that
is efficiently mimicked by b3 adrenergic
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Brown adipose tissue (BAT) activation reduces body fat and metabolic disor-
ders by the enhanced combustion of lipids and glucose into heat. The thermo-
genic activity of brown adipocytes is primarily driven by the sympathetic
nervous system (SNS) and controlled by the brain. In this review, we present
recent advances in understanding how cues, such as temperature, light, and
proteins, modulate the activity of brown fat by acting on the various hypotha-
lamic nuclei. Given that activated BAT has a high capacity to take up and burn
fatty acids (FAs) and glucose, pharmacological stimulation of brown fat in
humans by either targeting the hypothalamus or mimicking outflow of the
sympathetic nervous system might help improve glucose metabolism and
insulin sensitivity, and also lower body fat.
receptor agonists.

Activation of brown fat protects from
obesity and related disorders.
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Hypothalamic Regulation of Energy Expenditure
One of the first studies confirming a crucial role of the nervous system in energy homeostasis
dates back to 1942, when Hetherington and Ranson [1] described how hypothalamic lesioning
of rats frequently caused obesity, thereby providing evidence for the control of food intake and
energy expenditure by a specific brain region. However, the mechanism by which the hypo-
thalamus regulated energy expenditure remained elusive.

Today, the central and peripheral nervous systems (CNS and PNS) are increasingly recognized
as the regulators of energy expenditure. Many hypothalamic circuits are involved in the regulation
of energy expenditure, including the melanocortin system, among others [2]. The (re-)discovery
of BAT in small mammals and humans [3–5] shifted the research focus to the role of the nervous
system in beige and brown fat-mediated energy expenditure as possible treatment targets in
obesity and related disorders, including type 2 diabetes mellitus (T2DM) and cardiovascular
disease (CVD). Here, we review recent advances in elucidating the neuronal control of
the physiology of beige and brown fat, and discuss treatment possibilities that either target
the CNS or mimic outflow of the PNS to induce activation of brown fat and/or browning of
white fat.

Physiology of Brown Fat
While the main function of white adipose tissue (WAT) is to store energy in the form of
triglycerides (TG), BAT combusts TG into heat, a process referred to as ‘adaptive thermogene-
sis’. Brown fat depots are strategically localized in the scapular area near the large arteries,
where heat production appears to be essential for the survival of small mammals in cold
environments and for arousal of hibernators [6]. In addition to its crucial role in nonshivering
thermogenesis, BAT is probably also required for maintaining energy balance and is activated
upon overeating, a process called ‘diet-induced thermogenesis’. However, the existence of
such a process is a matter for debate [7].
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BAT is characterized by multilocular intracellular lipid droplets, numerous mitochondria, and
regulated expression and activity of uncoupling protein 1 (UCP1). Clusters of UCP1-express-
ing adipocytes with thermogenic capacity also develop in WAT in response to various stimuli,
including cold exposure and b-adrenergic agonists. These adipocytes have been named
beige, brite, or recruitable brown adipocytes and have characteristics that distinguish them
from classical brown adipocytes. Controversy exists around the nature of these beige
adipocytes and whether, in adult humans, BAT represents mainly brown or beige adipocytes
[8].

The thermogenic activity of brown fat is primarily driven by the SNS, reflected by a high density of
nerve endings in the tissue. Norepinephrine-induced adrenergic receptor signaling enhances
expression of proteins involved in thermogenesis and stimulates intracellular lipolysis [6].
Liberated FAs are directed to the mitochondria to be combusted, or may allosterically activate
UCP1 [9]. This results in the uncoupling of complexes I–IV of the respiratory chain and ATP
synthesis by proton leakage from the mitochondrial inner-membrane space into the mitochon-
drial matrix, thereby generating heat instead of ATP (Figure 1). Long-term sympathetic outflow
towards the fat depots additionally leads to an increased mass of BAT depots and so-called
‘browning’ ofWAT [10]. Since activated BAT has a high capacity to take up and burn TG-derived
FAs and glucose, BAT is considered a promising target to combat obesity and associated
diseases, including T2DM and CVD.

Autonomic Innervation of Brown Fat
Separate populations of pre-autonomic nerve fibers from hypothalamic nuclei relay to either
parasympathetic or sympathetic nuclei in the brain stem and spinal cord, respectively. While the
primacy of BAT activation by the SNS is clear and all rodent BAT depots are innervated by
sympathetic nerve fibers, the role of the parasympathetic nervous system in BAT is less well
known. Only the minor mediastinal and pericardial BAT depots appear to receive parasympa-
thetic innervation, as indicated by immunoreactivity for vesicular acetylcholine transporter
[11,12]. However, the function of the parasympathetic nervous system in brown fat biology
remains unknown.

BAT thermogenesis is activated by the SNS with the release of norepinephrine and subse-
quent stimulation of b-adrenergic receptors (Figure 1); mice deficient for all three subtypes of
the b-adrenergic receptor are cold intolerant and obese [13]. Within BAT, the b3-adrenergic
receptor is most abundant and b2-adrenergic receptors are probably restricted to the blood
vessels to regulate vasodilation [14,15]. Efforts identifying the exact contribution of each
type of adrenergic receptor to brown fat function are inconclusive. Mice deficient for the
b1-adrenergic receptor showed a lower basal metabolic rate and defective cold tolerance [16].
Correspondingly, blockade of primarily b1- and b2-adrenergic receptors by administration of
propranolol reduced BAT activity, as determined by the uptake of [18F]fluorodeoxyglucose
([18F]FDG) on PET imaging in mice [17] and patients with cancer [18]. By contrast,
b3-adrenergic receptor-deficient mice do not exhibit defects in basal metabolic rate or cold
tolerance [19] and administration of a b3-adrenergic receptor agonist increased energy
expenditure, mainly through browning of WAT, rather than activation of BAT [20]. However,
b3-adrenergic receptor-deficient mice do show upregulation of b1-adrenergic receptor
expression in BAT, indicating that the animals compensate for insufficient thermogenesis
[19]. More recent studies showed that pharmacological stimulation of specifically b3-adren-
ergic signaling enhanced thermogenesis in brown adipocytes [21], rodent BAT [22], and
human BAT [23]. Although the b1-adrenergic receptor is probably more important in BAT
physiology, most (clinical) research is focused on the development of specific b3-adrenergic
receptor agonists because b1- and b2-adrenergic receptor activation coincides with cardio-
vascular complications.
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Figure 1. Activation of the Brown Adi-
pocyte via the Sympathetic Nervous
System, Hypothalamic–Pituitary–
Thyroid (HPT) Axis, and Hypothala-
mic–Pituitary–Adrenal (HPA) Axis.
Upon enhanced sympathetic activity, both
norepinephrine (NE) and ATP are released
from nerve endings near brown adipo-
cytes. ATP is converted into adenosine
(Ado), which activates the A2A receptor.
Both the b3-adrernergic receptor (b3-AR)
and A2A receptor stimulate cyclic AMP
(cAMP) production by adenylyl cyclase
(AC). By contrast, endocannabinoids (EC)
may reduce this signaling through canna-
binoid type 1 receptor (CB1R)-mediated
inhibition of AC. cAMP activates protein
kinase A (PKA), which drives lipolysis
through phosphorylation of hormone-sen-
sitive lipase (HSL) and induces transcription
of genes involved in mitochondrial bio-
synthesis and thermogenesis via phos-
phorylation of cAMP response element-
binding protein (CREB) and p38-mediated
phosphorylation of activating transcription
factor 2 (ATF2). In addition, gene expres-
sion is regulated by thyroid hormone (T4/
T3) and glucocorticoid (GC) signaling. Fatty
acids (FA) that are released from lipid dro-
plets are directed towards the mitochon-
dria to be combusted or may allosterically
activate uncoupling protein 1 (UCP1). Intra-
cellular lipid stores need to be replenished
by uptake of glucose and triglyceride (TG)-
derived FA from the circulation. Abbrevia-
tions: ATGL, adipose triglyceride lipase;
CD36, cluster of differentiation 36; CPT1,
carnitine palmitoyltransferase I; D1, type I
iodothyronine deiodinase; D2, type II
iodothyronine deiodinase; Glut, glucose
transporters; GR, glucocorticoid receptor;
LPL, lipoprotein lipase;MGL,monoacylgly-
cerol lipase; TR, thyroid hormone receptor.
The stimulatory effect of catecholamines on BAT thermogenesis may be modulated by endo-
cannabinoids, a group of neuromodulatory lipids with both central and peripheral functions. On
the one hand, knockout of the cannabinoid type 1 receptor (CB1R) in single-minded 1 (Sim1)
neurons, which account for most paraventricular nucleus (PVN) neurons, increased brown fat
thermogenesis and protected from diet-induced obesity, indicating that endocannabinoids
regulate BAT activity through the brain [24]. On the other hand, peripheral CB1R antagonism
activated brown adipocytes directly, through relief of CB1R-mediated inhibition of cAMP
production [25].

Recently, it became evident that, in addition to catecholamines, adenosine acts as a sympathetic
co-transmitter andmediates part of the cold-induced activation of brown fat at least in mice, and
potentially also in humans [26]. Mechanistically, stimulation of purinergic A2A-adrenergic recep-
tors on brown adipocytes induced intracellular cAMP production by adenylyl cyclase, thereby
driving the same activating pathway as adrenergic signaling. Correspondingly, pharmacological
stimulation of the A2A-adrenergic receptors in mice activated BAT and induced browning of
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 3
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WAT, resulting in improved glucose tolerance and protection from diet-induced obesity [26].
Although promising, similar to b-adrenergic receptors, purinergic receptors are also highly
expressed on the cardiovascular system and immune cells [27], indicating a risk of adverse
events.

Hypothalamic Innervation of Brown Fat
Retrograde viral tracing methods have been used to identify hypothalamic origins of neuronal
activity in BAT. Injection of the transneuronal pseudorabies virus (PRV) in interscapular BAT
(iBAT) of hamsters [28] and later also rats [29,30] revealed potential neuronal connectivity with
the preoptic area (POA), paraventricular hypothalamus (PVH), dorsomedial hypothalamus
(DMH), lateral hypothalamic area (LHA), and suprachiasmatic nucleus (SCN). In recent years,
specific neuron types in hypothalamic areas have also been identified that regulate BAT activity.
Neurons in the arcuate nucleus projecting to BAT express cocaine- and amphetamine-regulated
transcript (CART), pro-opiomelanocortin (POMC), and leptin receptors, whereas BAT-innervat-
ing neurons in the LHA mainly express melanin-concentrating hormone (MCH) and orexins [30].
Functional studies showed that the thermoregulatory action of leptin is mediated through leptin
receptor neurons in the POA and DMH, likely via synaptic projections to the rostral raphe pallidus
neurons [31]. Furthemore, GABAergic RIP-Cre neurons in the arcuate nucleus contribute to the
stimulatory effect of leptin on brown fat [32]. Involvement of other hypothalamic nuclei in
thermogenesis is discussed in more detail in the next section.

The presence of nerve fibers in BAT containing sensory-associated neuropeptides also sug-
gests sensory innervation. Correspondingly, injection of the anterograde transneuronal herpes
simplex virus type 1 (HSV1) provided neuroanatomical evidence for sensory connections to the
PVH, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas
[33]. Reciprocal sympathetic connections have been identified by simultaneous injections of
PRV and HSV1, demonstrating the existence of sensory feedback circuits [34]. Subsequent
injection of the sensory nerve toxin capsaicin in iBAT resulted in impaired cold tolerance [33],
indicating that sensory feedback fromBAT is required for appropriate thermogenic responses. In
conclusion, activation of hypothalamic neurons, all known to be importantly involved in the
regulation of food intake and energy expenditure, innervate BAT, suggesting a major role for
peripheral metabolic factors in regulating BAT via the hypothalamus.

Hypothalamic Integration of Peripheral Signals and Regulation of Brown Fat
Activity
The hypothalamus senses and integrates signals from the periphery (e.g., leptin levels) and
environment (e.g., cold exposure) and responds by regulating sympathetic outflow towards BAT
(Figure 2, Key Figure). Other signaling pathways from the brain towards brown fat include the
hypothalamic–pituitary–thyroid (HPT) axis (Box 1) and hypothalamic–pituitary–adrenal (HPA)
axis (Box 2). The transcription of genes involved in mitochondrial biosynthesis and thermogene-
sis is regulated by the thyroid hormones T4 and T3 (i.e., HPT axis) and by adrenocorticotropic
hormone (ACTH) and glucocorticoids (i.e., HPA axis).

Peripheral and Central Temperature Sensing
Cold- and warm-sensitive receptors send temperature information from the periphery to the
hypothalamic POA, parabrachial nucleus, and the peritrigeminal nucleus [35]. In addition, the
POA itself also contains temperature-sensitive neurons, whose responsiveness is in return
dependent on skin temperature. Glutamatergic stimulation of the POA results in enhanced
thermogenesis by BAT [36], indicating functional connectivity.

Due to their strategic localization, subcutaneous thermoreception by the transient receptor
potential (TRP) cation channel family is the result of both ambient temperature and blood flow
4 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Key Figure

Hypothalamic Integration of Peripheral Signals and Regulation of Brown
Fat Activity
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Figure 2. The hypothalamus integrates signals on body temperature, timing, and energy status and responds by regulating
the activity of brown fat. The thermogenic activity of brown adipocytes is primarily driven by the sympathetic nervous system
upon release of noradrenaline (NE) and adenosine (Ado) in the tissue. Additionally, hypothalamic activation results in pituitary
activation and release of adrenocorticotropic hormone (ACTH) and subsequent glucocorticoids (GCs) and thyroid hormone
(TH), which directly regulate brown adipose tissue (BAT) activity. Abbreviations: AH, anterior hypothalamus; ARC, arcuate
nucleus; BMP8, bone morphogenic protein 8; DMH, dorsomedial hypothalamus; FGF2 fibroblast growth factor 21; GLP1,
glucagon-like peptide 1; LHA, lateral hypothalamic area; MC4R, melanocortin 4 receptor; NE, norepinephrine; NPY,
neuropeptide Y; PH, posterior hypothalamus; POA, preoptic area; PVH, paraventricular hypothalamus; SCN suprachias-
matic nucleus; VMH, ventromedial hypothalamus.
within the skin. Among the members of the TRP family, TRPM8 is activated by mild cold
exposure (<27 8C), and TRPM8-deficient mice exhibit reduced cold tolerance [37]. Conversely,
administration of the TRPM8 agonist menthol directly on the skin induces heat production [37].
Interestingly, TRPM8 is also expressed by brown adipocytes and stimulation of brown adipo-
cytes with menthol increases UCP1 expression [38], suggesting a direct temperature sensing
and response within brown fat.

It is likely that other TRP channels are also involved in the regulation of brown fat activity. TRPV4
is a warm-sensitive receptor that is highly expressed in WAT, where it acts as negative regulator
of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1/), UCP1
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 5
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Box 1. HPT Axis in Brown Fat Function

Upon cold exposure, the hypothalamus releases thyrotropin-releasing hormone (TRH), which stimulates the pituitary to
produce thyroid-stimulating hormone (TSH). In turn, thyroid hormones (THs) are released from the thyroid gland in the
form of thyroxine (T4), which is transformed into the bioactive hormone triiodothyronine (T3) by the catalytic action of the
iodothyronine deiodinase enzymes (D1 and D2) in peripheral tissues, including BAT. In the brown adipocyte, both TSH
and THs drive thermogenesis [93]. THs do so by increasing both Ucp1 gene transcription and stabilization of Ucp1
mRNA, effects that are synergistic with adrenergic signaling [94].

THs are crucial in sustaining body temperature and the basal metabolic rate can be reduced by as much as 30% in the
absence of TH [95]. In addition to direct effects on BAT, THs also potently activate BAT by enhancing sympathetic
outflow, since bilateral denervation of the sympathetic nerves innervating BAT or the administration of b-adrenergic
receptor antagonists markedly attenuate the thermogenic response of centrally administered TRH [96]. This action may
be centered not only in the DMH and/or POA [97], but also within the VMH, where injection of T3 stimulates expression of
thermogenic markers in BAT [62]. In conclusion, the HPT axis is critically involved in brown fat thermogenesis; however,
the exact contributions of its direct action on BAT and its indirect action via modulating sympathetic outflow need to be
unraveled.
expression, and oxygen consumption [39]. Genetic ablation or antagonism of TRPV4 induces
elevated thermogenesis and protects from diet-induced obesity, although the possible involve-
ment of the SNS remains unknown.

Similar to TRPV4, TRPV1 is a warm-sensitive receptor that promotes thermoregulatory cooling,
at least in part by stimulating hypothalamic vasopressin secretion [40]. Interestingly, TRPV1 is
not only expressed in the skin, but also in the intestines. Intestinal TRPV1 agonism by, for
example, capsaicin (the pungent ingredient of red pepper) or the unsaturated long-chain fatty
acid monoacylglycerol, promotes brown fat thermogenesis and suppresses diet-induced vis-
ceral fat accumulation [41]. Thus, direct activation of thermoreceptors by capsaicin andmenthol,
for example, can be effective strategies to activate BAT.

Circadian Rhythmicity and the Regulation of Brown Fat Activity
Ablation of the SCN [42] or continuous light exposure [43] result in reduced energy expendi-
ture and enhanced weight gain. The identification of neuroanatomical connections between
the SCN and BAT [28] indicates the possible involvement of BAT in associations between
disturbed circadian rhythm and obesity. Supporting this hypothesis, neurons in the SCN
become activated upon cold exposure [44] and injection of glutamate directly into the SCN
increases BAT thermogenesis in rats [45]. In addition, it was recently shown that prolonged
daily light exposure not only attenuated circadian rhythmicity, but also reduced sympathetic
outflow towards BAT, accompanied by decreased BAT activity and increased body fat mass
in mice [46]. Cohort studies suggest that, in humans, BAT activity is also physiologically
regulated by the biological clock. The detectability of BAT by [18F]FDG-PET-CT imaging at
room temperature follows a circannual cycle [47,48], with low detectability of BAT during
summer (i.e., long day) compared with winter (i.e., short day). Although differences in
outside temperature over the year would be a likely explanation for this phenomenon, the
detectability of BAT showed a stronger correlation with day length than with outside temper-
ature [47]. It is tempting to speculate that this seasonal adaptation of BAT activity to day
length, which is relevant irrespective of whether the animal is nocturnal or diurnal, precedes
changes in temperature and thereby prepares the body for upcoming changes in ambient
temperature.

Fibroblast growth factor 21 (FGF21) is a hormone released by the liver and WAT upon various
nutrient stresses, such as starvation and by BAT upon cold exposure. Central administration of
FGF21 enhanced energy expenditure and prevented weight gain at least partly via activation of
BAT and browning of WAT [49–51]. In addition, FGF21 alters circadian behavior, and genetic
ablation of the co-receptor b-klotho in the SCN and dorsal vagal complex (DVC) reversed the
6 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Box 2. HPA Axis in Brown Fat Function

Glucocorticoids (GCs) are steroid hormones released by the adrenals upon stimulation by adrenocorticotropic hormone
(ACTH) during a stress response. Several studies show strong inhibitory effects of GCs on BAT activity. These may act
directly on BAT, by transcriptional repression ofUcp1 and interference with adrenergic signaling, or indirectly via inhibition
of sympathetic outflow from the hypothalamus. Interestingly, in contrast to GCs, ACTH increases BAT activation, likely via
stimulation of cyclic (c)AMP production [98].

In general, stress induces activation of BAT, predominantly through activation of the SNS. However, it may also involve
corticotropin-releasing factor (CRF)-induced ACTH release. Another possibility for a generalized stress effect on BAT is
the direct effect of (hypothalamic) CRF on sympathetic outflow towards BAT [99]. In turn, GCs can subsequently inhibit
BAT activity directly or by its negative feedback on the CRF and ACTH release. The underlyingmechanism of GC-induced
inhibition of BAT activity and the differential effect of ACTH and GCs on BAT remain unclear and need to be further
investigated. Conceptually, it is of note that the opposite effects of early (norepinephrine, ACTH) and late (GCs) stress
responsive factors are seen in other systems, such as in the infection–inflammation–GC-dependent anti-inflammation
process [100].

Given that obesity dampens the cortisol rhythm [101] and is associated with lowered BAT activity, high-fat diet-induced
flattening of the cortisol rhythmmay be causally involved in the reduction of BAT activity. Whereas under basal conditions
the high-affinity mineralocorticoid receptor (MR) is not occupied by cortisol, flattening of the cortisol rhythm leads to
continuous activation of the MR. In addition to the GC receptor (GR), MR is also expressed in BAT and, although in vivo
studies are lacking, in vitro studies show inhibiting effects of MR on BAT activity [102]. Therefore, it has been speculated
that MR antagonists represent a combined therapy for both hypertension and obesity.
metabolic effects of FGF21 [49], suggesting that FGF21 acts in the SCN through the modulation
of circadian rhythmicity.

Regulation of Brown Fat Activity by the Melanocortin System
The central melanocortin system is crucial in the regulation of food intake and energy expendi-
ture. Inhibition of melanocortin 3/4 receptor (MC3/4R) signaling reduced sympathetic outflow
towards BAT and BAT activity [2], while activation of the melanocortin system by intracere-
broventricular (ICV) administration of MC3/4R agonists (e.g., melanotan II [52], insulin [53], and
leptin [54]) enhanced sympathetic outflow and activation of BAT. Restoration of MC4R expres-
sion specifically in the LHA inMC4R-deficient mice restored BAT activity and glucose intolerance
[55]. However, the PVH [56] and DMH [54] have also been implemented in MC4R-mediated BAT
activation. For example, injection of PRV in iBAT of MC4R-GFP-expressing mice suggested
MC4R-expressing neuronal populations, among others in the PVN, to be connected to iBAT
[57]. Neuropeptide Y (NPY), expressed by neurons in the arcuate nucleus upon fasting and
known to inhibit MC4R neurons, regulates BAT function through relay in the PVH [58]. Together,
these studies suggest that reduced BAT activity underlies at least part of the obese phenotype in
MC4R-deficient individuals [59].
Integration of Peripheral Signals within the VMH through AMPK Activity
The brain directly monitors energy status of the body. High energy availability drives de novo
lipogenesis not only in metabolic organs, but also in the hypothalamus, yielding increased levels
of malonyl coenzyme A (CoA) and long-chain fatty acyl-CoAs that signal the need to reduce food
intake. Correspondingly, ICV administration of long-chain fatty acids, such as oleic acid, reduces
food intake [60]. Conversely, ICV administration of inhibitors of fatty acid synthase (FAS) has a
profound orexigenic effect and may increase energy expenditure because only part of the body
weight loss could be explained by a reduction in food intake [61]. Interestingly, fatty acid
synthesis is tightly regulated by 50-AMP-activated protein kinase (AMPK), which is a cellular
energy sensor that is active upon low energy availability (i.e., high AMP/ATP). Stereotaxic delivery
of a dominant-negative AMPK/ into the VMH increased malonyl-CoA levels in the ventral
hypothalamus and induced weight lost [62]. This mechanism also mediates at least part of the
glucagon-like peptide 1 (GLP1)-mediated reduction in food intake and increase in energy
expenditure through BAT activation [63,64]. GLP1 signaling lowers hypothalamic AMPK activity,
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 7
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thereby increasing neuronal fatty acid synthesis, resulting in decreased expression of orexigenic
peptides and increased expression of anorexigenic peptides. Consistent with this pathway, both
ICV administration of AICAR (a potent AMPK activator) and an adenoviral vector overexpressing
constitutively active AMPK diminished weight loss induced by the GLP-1 analog liraglutide [63].

Other potent molecules that activate BAT through enhancing sympathetic outflow include
thyroid hormone [62], estradiol [65], nicotine [66], and bone morphogenetic protein 8 [67].
Evidence for the exact neural pathways involved is limited, but most likely signaling is processed
through the VMH. Silencing of the estrogen receptor / specifically in the VMH reduced BAT
activity [68] and the reduction in body weight upon T3 administration could largely be prevented
by ablation of the thyroid hormone receptor in the VMH [62]. Inhibition of de novo lipogenesis in
the hypothalamus via ICV administration of an ACC inhibitor reversed weight loss in hyperthyroid
rats, pointing towards a mechanism involving regulation by AMPK [62]. Indeed, stereotaxic
delivery of the constitutively active AMPK/ resulted in weight gain in hyperthyroid rats, but not in
euthyroid rats. Similarly, genetic activation of AMPK in the VMH prevented estradiol- as well as
nicotine-induced increase in BAT thermogenesis and weight loss [65,66].

Thus, the VMH integrates peripheral signals through AMPK activity and subsequently regulates
BAT activity. By contrast, injection of PRV in iBAT only resulted in a few infections in the VMH of
hamsters [28] and not in rats [29,30]. One could speculate that AMPK propagates its signals
through expression of (an)orexigenic neuropeptides, rather than neurotransmitters.

Interventional and Pharmacological Strategies to Enhance Human Brown Fat
Activation
In 2009, three research groups in parallel demonstrated the presence of functional BAT in
human adults [3–5]. Mild acute cold exposure revealed uptake of [18F]FDG in the supraclavicular
region [4,5]. Daily cold (10 8C) exposure of 2 h for 4 weeks not only increased BAT volume and
activity, but also doubled cold-induced energy expenditure [69]. Furthermore, daily mild cold
(17 8C) exposure of 2 h for 6 weeks resulted in a decrease in body fat mass [70]. Thus, chronic
cold exposure recruits and activates human BAT, but it may be difficult to achieve increased
exposure to cold in daily life. A straightforward solution would be to use sympathomimetics.
Conflicting reports have been published with respect to the use of these and BAT activation in
humans. Oral administration of the non-selective b-adrenergic receptor agonist ephedrine
(2.5 mg/kg) activated BAT, as assessed by [18F]FDG PET/CT, in lean but not obese individuals
[71]. By contrast, a single intramuscular injection of ephedrine (1 mg/kg) [72] or systemic infusion
of isoprenaline (up to 24 ng/kg lean mass/min for 55 min) [73] did not increase [18F]FDG uptake
by BAT. Recently, it was demonstrated that a single oral dose (200 mg) of the b3-adrenergic
receptor agonist mirabegron was able to mimic the effects of cold-induced BAT activation on
[18F]FDG uptake by BAT and energy expenditure [23]. Despite some off-target effects on heart
rate and blood pressure, this was the first study demonstrating the potency of a b3- adrenergic
receptor agonist to activate human BAT thermogenesis.

Serum FGF21 levels are associated with BAT activity in humans [74], and rodent models have
demonstrated metabolic benefits upon FGF21 administration [49–51], although mostly inde-
pendent of BAT activation [75]. By contrast, serum levels of FGF21 are elevated in obesity and
are even higher in metabolic unhealthy obesity [76]. A clinical trial studying the effects of
LY2405319, a FGF21 analog, in obese human subjects with T2DM reported improvements in
dyslipidemia and a reduction in body weight [77]. Unfortunately, LY2405319 did not reach its
primary outcome, namely a reduction in basal glucose levels and, therefore, was not devel-
oped further, and direct effects on BAT activation were not investigated. Nevertheless, these
data are promising and FGF21 still holds potential as therapeutic target in the treatment of
obesity.
8 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Outstanding Questions
What is the relevance of brown fat for
the human adult body?

Is pharmaceutical targeting of human
brown fat a valuable strategy to reverse
obesity and related disorders?

How important is the SNS for human
brown fat activity?

Does reduced brown fat activity con-
tribute to the obese phenotype in
MC4R-deficient individuals?

Is brown fat involved in the association
between disturbed circadian rhythmic-
ity (e.g., due to shift work or light pollu-
tion) and human obesity?
Among other compounds implemented in the treatment of T2DM is the GLP1 analog liraglutide
that, in preclinical studies, has been shown to activate BAT and to induce browning of WAT via
increased SNS outflow [63]. Liraglutide failed to increase total energy expenditure in 4- and
8-week trials [78,79], but increased energy expenditure resulting in weight loss in a 1- and 2-year
trial [63,80]. In addition, dipeptidyl peptidase 4 (DPP4)-inhibitors that prevent the breakdown of
GLP1 also activate brown fat of mice [81] and appear to improve glucose metabolism [82] and
lower body fat in humans [83]. Co-treatment of obesemice with liraglutide and RM-493, which is
the only MC4R agonist currently in clinical trials, amplified the metabolic benefits [84]. Subcuta-
neous infusion of RM-493 in obese subjects for 72 h increased resting energy expenditure by
6.4% [85], underscoring the potency of targeting the melanocortin system.

TRP channels are expressed throughout the body, including the intestines. Dietary menthol-
induced activation of intestinal TRPM8 increased the core temperatures in mice [38]. Capsi-
noids, which are capsaicin-like compounds found in a nonpungent type of red pepper, were as
potent as capsaicin in increasing sympathetic nerve activity, thermogenesis, energy expendi-
ture, and fat oxidation, and in reducing body fat in both small rodents and humans [86,87].

Brown fat-targeted therapeutic approaches hold great promise in the treatment of human
obesity. Further characterization of human brown fat and the contribution of the SNS to it would
be helpful to develop optimal activation strategies.

Concluding Remarks
The CNS is an important regulator of energy balance. The fact that many of the systems involved
exert multiple modes of action, including the regulation of energy intake and brown fat activation,
makes them attractive and powerful targets for obesity and related disorders, such as hyper-
glycemia, a precursor of T2DM. Although pharmaceutical targeting of the brain appears to be
difficult in humans, one may circumvent this by improving circadian rhythmicity, acclimatization
to cold, and the use of sympathomimetic compounds or small molecules that enhance
peripheral noradrenergic signaling in BAT. Additionally, several unique approaches have been
developed, including combinatorial compounds (targeting multiple receptors simultaneously or
targeted delivery) [88,89] and nanoparticles (facilitating delivery to the brain) [90] to specifically
target hypothalamic sites, and application of electrical field stimulation to the surface of BAT to
mimic SNS outflow [91].

Preclinical studies have shown that BAT activation protects against obesity, dyslipidemia, and
even atherosclerosis. So far, only a few studies have explored the metabolic benefits of BAT
activation in humans, resulting in many questions remaining (see Outstanding Questions). The
translation of preclinical studies to humans is limited by the lack of non-invasivemeasurements of
brown fat activity. The identification of biomarkers and development of other non-invasive
measures for brown fat activity (e.g., metabolic magnetic resonance imaging) would be a widely
applicable alternative approach.

It has been estimated that brown fat volume in human adults is about 100–200 g and that
nonshivering thermogenesis accounts for only 15% of resting energy expenditure [92]. However,
small but consistent changes in energy expenditure will ultimately determine body weight and
disease, and, therefore, activation of brown fat and/or browning of white fat hold great promise in
the treatment of obesity and related disorders.
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