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Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin
resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function
is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology
of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current
knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid
storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a
Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
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1. Introduction

Lipid droplets (LDs) are the lipid storage organelles of all organisms.
Adipose tissue is the body's largest energy reservoir in mammalians
and birds. Energy is stored in fat cell LDs as triacylglycerols (TGs). In
the past fifty years, drastic life style and environmental changes have
contributed to a worldwide pandemic of obesity and co-morbidities
that demands a better understanding of adipose LDs, their role in
maintaining energy homeostasis and impact on development of meta-
bolic diseases. In recent years, our general knowledge of the biology of
LDs has increased, reviewed extensively elsewhere [1-6]. This review
is focused on specific aspects of adipose LD biology as it relates to
metabolic diseases.

2. Critical role of adipose LDs in mammalian physiology
and diseases

2.1. White adipose energy storing LDs

LDs in mammalian adipocytes in white adipose tissue (WAT)
serve as the main long-term energy store and play a crucial role
maintaining energy homeostasis [7,8]. The remarkable lipid storage
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capacity of white adipocyte LDs can be readily visualized by microscopic
observation [5]. Most mature adipocytes have a single LD, whose size
can range from 25 to 150 um diameter, occupying most of the cell vol-
ume and thereby determining the cell size. Adipose depots grow by
either increasing fat cell/LD size (hypertrophy) or increasing the num-
ber of fat cells (hyperplasia) (Fig. 1). Importantly, both mechanisms
require coordinated and extensive cellular structural changes that
accommodate the emergence and growth of the LD. In the fed state,
adipose LDs store excess energy as TG. During fasting, when glucose
becomes limiting, TGs in adipose LDs are rapidly hydrolyzed into
non-esterified fatty acids (NEFAs) and glycerol. NEFA and glycerol
leave the adipose and are transported via the bloodstream to other
tissues (for glycerol mainly to the liver and for NEFA mainly to skeletal
muscle and heart). During fasting plasma NEFA is almost entirely from
hydrolysis of TG stored in the adipose LDs (Fig. 1) [9].

When energy and macronutrient levels are saturated by chronic
overfeeding, surplus energy is stored in adipose LDs and leads to obe-
sity, generally defined as excessive accumulation of TG in WAT. Con-
comitant with increased adipocyte LD size, pathological overgrowth
of adipose tissue is associated with a cluster of changes including
hypoxia, inadequate angiogenesis, increase in adipocyte cell death,
macrophage infiltration, fibrosis and adipose tissue insulin resistance
(Fig. 2). The adipocyte's micro-environment is severely impacted and
limits adipose tissue expandability by inhibiting recruitment of new
lipid storage units (preadipocytes) and/or preventing their maturation
(Fig. 2) [10,11]. This scenario is supported by recent murine and
human studies. Overexpressing adiponectin in murine adipose tis-
sue, an adipokine with known anti-inflammatory and anti-insulin
resistance properties [12], or down-regulating collagen VI, a highly


http://dx.doi.org/10.1016/j.bbadis.2013.05.007
mailto:csztalry@grecc.umaryland.edu
http://dx.doi.org/10.1016/j.bbadis.2013.05.007
http://www.sciencedirect.com/science/journal/09254439
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2013.05.007&domain=pdf

394 M. Konige et al. / Biochimica et Biophysica Acta 1842 (2014) 393-401

Positive
energy balance

Hypertrophy

insulin
—_

LPL

Excess circulating TG

WAT LD storage adaptation

g

Hyperplasia

Signal(s)?

NEFA

Negative
energy balance

NEFA
s

Catecholamines
—_—

Other
Insulin-sensitive tissues

Fig. 1. Healthy adipocyte lipid storage expansion and lipid release. In the fed state with positive energy balance, excess circulating lipids are hydrolyzed by lipoprotein lipase (LPL)
synthesized in adipose tissue parenchymal cells and spread along the vascular mesh. LPL-released non-esterified fatty acids (NEFAs) are then re-esterified into triacylglycerols (TG)
and stored in adipocyte LDs. It is accepted that once LD growth has reached its capacity (hypertrophic growth), new preadipocytes are either recruited or undergo maturation
(hyperplasia). This requires effective tissue remodeling including, adequate implementation of the adipogenic program, angiogenesis and extracellular matrix remodeling supported
by endocrine paracrine and neuronal factors. Signaling from adipocytes filled to their LD storage capacity helping recruit preadipocytes are possible, but have yet to be identified.

enriched extracellular matrix component of adipose tissue [13], leads to
expansion of adipocytes but paradoxically is associated with sub-
stantial improvements in whole-body energy homeostasis, both with
high-fat diet exposure and in leptin deficient background [12,13]. The
main difference found between fat cell/LD size from insulin-sensitive
and insulin-resistant obese patient adipocytes is a propensity for a
small fat cell/LD size in obese insulin resistant patients, suggesting
a defect in LD growth and maturation [14]. Alternatively, treatment
with pharmacological agents that promotes adipose tissue expandabil-
ity such as thiazolidinediones (TZDs) reverses it [15].

More importantly, obesity is thought to be the most common cause
of systemic insulin resistance and it is a key factor in the etiology of a
number of diseases, including type 2 diabetes (T2D) [16]. Insulin resis-
tance is defined as an inadequate response to insulin in target tissues,
such as skeletal muscle, liver, and adipose tissue, reducing physiologic
effects of circulating insulin. The hallmark of impaired insulin sensitivity
in WAT is a reduced ability of insulin to inhibit LD lipolysis, resulting in
elevated circulating NEFAs. An evidence based consensus is that high
NEFA release from WAT causes insulin resistance in skeletal muscle,
liver and other tissues [17,18]. It is inferred that these tissues are

unable to store or oxidize the lipid influx. The lipid then floods cellular
pathways and compartments, causing dysfunction labeled lipotoxicity
(Fig. 2) [19]. It is purposed that the link between obesity and systemic
insulin resistance is the result of ineffective lipid partitioning to adipo-
cyte LDs and these lipids disrupt adipokine and cytokine secretion [20].

The proposed basis for the relationship between obesity and sys-
temic insulin resistance relies on WAT LDs acting as a lipid sink for ex-
cess nutritional lipids, storing them in the form of neutral lipids. This
LD centric view argues that as long as nutrient excess can be efficiently
sequestered in insulin sensitive white adipose LDs, non-adipose tissues
are protected from lipotoxicity. This concept was further shaped from
observations that animals and humans with lipodystrophy, in which
adipose tissue fails to develop properly or is ill-distributed, also have
ectopic LD deposition, contributing to insulin resistance and eventually
to decreased insulin secretion [21,22]. Supporting the importance of
WAT LD function is the fact that monogenic mutations responsible for
95% of lipodystrophies were found to effect either adipogenesis or
LD growth and function. These adipogenesis gene mutations include
peroxisome proliferator-activated receptor-y (PPARYy), Akt2, or lamin
A/C. LD growth gene mutations found include perilipin 1 (PLIN1), cell
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Fig. 2. Unhealthy adipocyte lipid storage expansion associated with obesity. White adipose tissue (WAT) maladaptation to chronic excess lipids includes altered expression and/or
distribution of LD surface associated proteins, inadequate angiogenesis, hypoxia, increased adipocyte cell death, increased macrophage infiltration, increased inflammation, in-
creased fibrosis and adipose tissue insulin resistance that leads to reduced adipose tissue capability to store lipids. Excess spill over lipids are then directed to non-adipose tissues
with a limited capability for LD storage. Defects in non-adipose tissue LD lead to tissue lipotoxicity, whole body imbalance of glucose/lipid energy homeostasis and development of

pathological states such as T2D.

death-inducing DFF45-like effector C (CIDEC), cav-1 (CAV-1), Polymer-
ase 1 and Transcript Release Factor (PTRF/cavin-1), seipin (BSCL2), and
1-acylglycerol-3 phosphate-oacyltransferase 2 (AGPAT-2) [21].

In this context, understanding mechanisms that control expand-
ability of adipose LD storage may be essential to determining risk fac-
tors for development of diabetes with obesity and better treatments for
lipodystrophies.

2.2. Brown and beige/brite adipose energy consuming LDs

Whereas white adipocyte LDs store fat, brown adipocyte LDs are
adapted to dissipate stored energy as heat for thermogenesis. Since
2007, several independent research teams have shown conclusively
that adult humans have functional brown adipose tissue (BAT) [23-27].
This discovery of functional BAT in adult humans re-energized the obesity
research field. BAT is primarily localized in discrete locations such as the
supraclavicular and axillary regions but can also be found interspersed
within WAT and skeletal muscle tissues in rodents [28,29]. Brown fat
cells that emerge in white fat depots under certain conditions have
been described as “beige” or “brite”. The current thinking is that beige
cells and brown fat cells come from separate cell lineages [30]. But
some reports suggest that WAT could trans-differentiate to BAT and
vice versa [31,32]. The thermogenic capacity of even small amounts of
BAT makes it an attractive therapeutic target for weight loss, and for
anti-obesity or anti-T2D therapies increasing energy expenditure.

The origin, differentiation, function and physiological importance
of BAT have been reviewed [33,34], but while LDs in WAT have been
extensively studied, much less is known about their biology and
function in BAT. The understanding of BAT LDs and their regulation
relies heavily on knowledge of WAT LDs, but advances have been
limited to date since the brown or beige/brite LD proteomes have yet
to be fully characterized. Intriguingly, over-expression and loss of func-
tion of some WAT LD associated proteins in transgenic murine models
have resulted in an increased presence of brown adipose cells and
improved systemic insulin sensitivity. Here we will review in this con-
text some of the studies.

3. LD surface-associated proteins as a critical interface for
LD function

The importance of the normal function of WAT LDs to preserve
whole body insulin sensitivity and energy homeostasis has spurred
interest in extensive characterization of white adipocyte LDs, the most
adapted fat-storing organelle. Seminal work by Dr. Londos and col-
leagues led to identification of the first LD surface-associated protein,
Plin1, in white adipocytes [35]. Their discovery revoked the classic
view of LDs as passive storage structures of lipids and gave momentum
to new lines of investigation aiming to better understand the biology of
this organelle in physiological and pathological conditions [1-8]. LDs
are now known to be dynamic organelles that have a key regulatory
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role in the cellular turnover of lipids, and they exist in most cell types
and organisms [36-39]. All cytosolic LDs have a spherical shape, giving
the least surface area. They comprise a core of neutral lipids, and in
adipocytes the most abundant species is TG, with a phospholipid mono-
layer surface containing free cholesterol [40] and proteins that regulate
the LD function. White adipocyte LD proteome must be well adapted to
efficiently control storage and release of lipids. This remarkable lipid
storage capacity is characterized by presence of a unilocular droplet,
occupying most of the cell volume, imposing a lack of droplet motility
and a unique physical close proximity with the plasma membrane.

Results from four proteomic studies using LDs isolated from primary
adipocytes and adipogenic 3T3-L1 cells identified over two hundred LD
proteins [41-44]. Overall, the classification profile of this unexpected
large panel of proteins in the adipocyte LD proteome is quite similar
to other reported mammalian proteomic profiles obtained from other
cell types or from Drosophila fat bodies, confirming the status of the
LD as a defined and conserved organelle. It includes the predominant
representation proteins that belong to the perilipin protein family,
lipid metabolism related enzymes and modifiers, intracellular traf-
ficking including many Rab proteins, chaperone proteins, cytoskeleton
elements, ER and mitochondria proteins. These observations under-
score the dynamic surface of LDs and the importance of communication
with other intracellular organelles though specific interactions. It remains
a possibility that the use of cell fractionation techniques, the highly
hydrophobic nature of the lipid droplet, the relative abundance of adipo-
cyte proteins and their close structural association with ER and mitochon-
dria might confound the proteomic analyses. Secondary analysis using
imaging and functional studies is necessary to confirm a subset of these
proteins as bona fide LD proteins, and to localize them on the LD surface.
The most surprising finding of these studies is that despite a remarkable
morphological difference between adipose and non-adipose LDs, a
relatively small number of specifically enriched adipose LD associated
proteins have been identified so far, but includes Plin1, Fsp27/Cidec,
caveolins and cavins. Intriguingly these proteins all have direct func-
tional links with development of systemic insulin resistance.

4. Adipocyte-specific LD proteins with direct links to
insulin resistance

4.1. LD proteins controlling adipose LD size and hydrolysis

4.1.1. Perilipin 1

Perilipin 1 (Plin1) was the first member recognized of the perilipin
protein family. The family is defined by sequence similarity across
species and currently has five members [45]. A comprehensive over-
view of the perilipin family has been published elsewhere [46-48].
The perilipins constitute a proteome “signature” for LDs that consis-
tently includes at least one of the five members. A perilipin is always
present and quantitatively represents the most abundant protein,
suggesting at least an important structural role for this class of pro-
teins in LD machinery [45-47]. Perilipin distribution is also tissue
and FA utilization dependent. Plin1 and perilipin 4 (Plin4, previously
S$3-12) are highest in adipose tissue. Perilipin 2 (Plin2, previously
adipophilin, ADRP) and perilipin 3 (Plin3, previously Tip47) are
ubiquitous, although Plin2 is highly abundant in the liver. Perilipin
5 (Plin5, previously MLDP, OXPAT, LSDP5) is found primarily in oxi-
dative tissues, including BAT or subcutaneous WAT treated with per-
oxisome proliferator-activated receptor gamma (PPAR-vy) agonists
[48]. In mice and humans, a single Plin1 gene gives rise to at least
three isoforms, Plin1A, B and C, with a common N-terminal region
but differing in C-terminal length [45]. Plin1A and 1B are highly
expressed in adipose tissues while Plin1C is preferentially found in
steroidogenic tissues. Applying fluorescence activated cell sorting
(FACS) to separate fluorescently labeled LDs, it was recently demon-
strated that isoforms of Plin1 differentially coat either TG (Plin1A
and B) or cholesterol ester (CE) specific LDs (Plin1C), emphasizing

diversity of function for the different Plin1 isoforms [49]. So far, there
is little understanding of the physiological importance of expression
and regulation of these isoforms. Plin1A, often referred to as Plin1, is
the most abundant form and constitutive of the LDs as well as the
major PKA substrate in adipocytes. Its transcription has been found
regulated by estrogen receptor-related receptor alpha (ERR-at), peroxi-
some proliferator-activated receptor gamma (PPAR-y) and more re-
cently by liver X receptor alpha (LXR-a) [50-53]. During the past ten
years, using cell culture studies and transgenic mice models, several lab-
oratories demonstrated an important role of Plin1 orchestrating both
TG and diacylglycerol hydrolysis in adipocytes in response to phosphor-
ylation by protein kinase A (PKA) [54-58]. Plin1 regulates substrate
access of adipose triglyceride lipase (ATGL) and hormone sensitive li-
pase (HSL), two key adipose LD hydrolytic enzymes with triacylglycerol
lipase and diacylglycerol lipase activity, respectively [59]. Plinl
serves as a scaffolding protein at the LD surface mediating protein/
protein interactions with key players in LD hydrolysis. The present
accepted model is that when lipolysis is suppressed by insulin
(basal conditions), comparative gene identification-58 (CGI-58), a
co-activator of ATGL, preferentially binds to un-phosphorylated
perilpin-1 at the surface of the LD [47,59,60]. Under these conditions,
ATGL is located in both the cytosol and on LDs, whereas HSL is only
cytosolic. Upon p-adrenergic stimulation, HSL and Plin1 are both
phosphorylated by PKA, resulting in a reorganization so that HSL
binds Plin1 at the LD surface via at an N-terminal region [58,61]
and dissociation of CGI-58 from Plin1, which promotes CGI-58 interac-
tion with ATGL [62]. Natural occurring genetic errors in humans and in
vitro truncation studies have identified a protein-protein surface in-
teraction that involves Plin1 C-terminal with the cap region (pro180 to
Leu280) of CGI-58 [63].

4.1.2. Links between Plin1 and insulin sensitivity and energy homeostasis
Transgenic mice with Plin1 loss of expression helped establish a
link between Plin1 and systemic insulin sensitivity [64,65]. Plin1
null mice, generated by two separate groups of investigators, show a
lean phenotype and systemic insulin resistance with aging [64,65].
Isolated adipocytes from Plin1 null mice showed elevated constitutive
(un-stimulated) lipolysis attributed to loss of a TG protective function
of Plin1. They also showed dramatically attenuated stimulation of lipo-
lytic activity. Intriguingly, the usual adipose parameters implicated in
development of insulin resistance, NEFA, leptin and adiponectin plasma
levels, were not substantially different between Plin1 null and wild
type mice. Indeed, despite demonstrated increased rates of constitu-
tive un-stimulated lipolysis in Plin1 null adipocytes, circulating NEFAs
were either decreased [65] or unchanged [64]. A drastic reduction of ad-
ipose LD size and a compensatory increase of adipose FA 3-oxidation
likely contribute to the observed lack of expected increase in circulating
NEFA in this mice model [66]. Thus, the exact mechanisms underlying a
functional relationship between Plin1 and systemic insulin resistance in
the Plin1 null mice are yet to be fully understood. Interactions of Plin1
with other modifier genes that effect both weight and insulin sensitivity
with age are possible, but remain to be identified. A further complica-
tion in understanding Plin1 role in insulin resistance is an unexpected
effect found with over-expression of Plin1 in adipose tissue resulting
in a lean phenotype, resistance to diet induced obesity and improve-
ment of whole body insulin sensitivity. Further analyses indicated com-
pensatory mechanisms including increased B-oxidation and decreased
levels of Fsp27, a LD associated protein involved in LD growth. Although
the translational aspect of these studies is difficult to interpret, they do
reveal LD surface limitation for protein binding and murine adipocyte
adaptation to shunt excess NEFA via mitochondria [3-oxidation.

Two separate heterozygous missense mutations in PLIN1, which
alters amino acids in the C-terminus of the protein, were recently
identified in six patients and associated with a novel form of familial
partial lipodystrophy, hepatic steatosis, dyslipidemia, insulin resis-
tance, and severe T2D [67]. Histological analysis of WAT showed
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increased presence of macrophage infiltration and fibrosis. Follow-up
with in vitro mechanistic studies showed that both mutations fail to
inhibit un-stimulated lipolysis due to an inability to bind and stabilize
CGI-58 [63,67].

Overall, these rare PLINT human mutations present a stronger sys-
temic phenotype than observed in the Plin1 null mice. The differences
may be due to species differences in adipose tissue metabolism. Studies
comparing transgenic murine models with rare human polymorphisms
are extremely valuable to establish in vivo gene function. So far, only a
limited number of human studies have investigated links between
adipocyte PLIN1expressionand obesity phenotypes, with inconsistent
results. An early study showed adipose PLIN1 levels to be greater in
non-diabetic obese individuals than in lean individuals and positively
correlated with percent body fat, but unrelated to insulin resistance or
inflammatory markers [68]. In contrast, two studies comparing mor-
bidly obese vs non-obese patients or obese vs non-obese women
showed lower PLINT levels in the obese populations [69,70]. In the latter
study, a greater rate of lipolysis was associated to a specific PLIN1 poly-
morphism [70]. Finally, several studies found a number of PLIN1 poly-
morphisms that potentially influence body weight and risk of metabolic
disease, although this was not fully reproduced in other studies. The
impact of PLINT polymorphisms on health has been recently reviewed
[71].

4.1.3. Cidea and Fsp27/Cidec

The CIDE family currently consists of three proteins, Cidea, Cideb
and Fsp27 (murine)/Cidec (human) based on primary sequence homol-
ogy and has been reviewed elsewhere [72,73]. CIDE family expression is
tissue-dependent with Cidea primarily in brown adipocytes, Fsp27/
Cidec mostly in white adipocytes and Cideb in the liver. In humans,
higher expression of Cidea occurs in white adipocytes along with
Cidec. All three CIDE proteins can be found at the ER and at the LD sur-
face [74,75]. Work from several laboratories has clearly demonstrated
importance of Fsp27/Cidec and Cidea in the regulation of adipocyte LD
size and adipocyte TG storage.

An earlier report showed that ectopic expression of Fsp27 in
adipogenic 3T3-L1 cells resulted in larger LD size while knockdown
of Fsp27 in fully differentiated adipocytes resulted in smaller LD particle
size and increased un-stimulated lipolysis, compared to wild type cells
[75]. Recent progress has been made in understanding molecular events
underlying Fsp27/Cidec function. Using confocal imaging and fluores-
cent recovery after photobleaching, both Fsp27 and Cidea were shown
to facilitate clustering of droplets [76,77] and to bundle at discrete
LD-LD contact sites, mediating transfer of bulk lipids from smaller LDs
to larger LDs, thus promoting LD growth [76]. This process differs from
vesicle fusion by a dependency on LD size and extended time scale.
Fsp27-mediated LD growth does not seem to be dependent on the pres-
ence of adipose specific proteins, especially Plin1, as ectopic Fsp27 is able
to promote LD growth in non-adipose cultured cells.

Further studies are necessary to identify if other protein(s) are
involved and to understand the specifics of Fsp27-mediated re-
organization of lipids and proteins at the LD surface. This will require
obtaining native purified Fsp27 protein to perform in vitro biochemical
reconstitution of Fsp27-mediated lipid transfer. A recent publication of
a preliminary partial analysis of the crystal structure of the CIDE-N
domain of Fsp27 promises to help elucidate structure-function of this
protein [78]. The molecular mechanisms by which Fsp27 controls lipol-
ysis remain unclear but Fsp27 was recently shown to constitutively
limit LD association of ATGL [79]. Further analyses are required to dis-
tinguish if Fsp27/Cidec competes with ATGL for lipid binding sites on
the LD surface or if re-organization of other proteins/lipid at LD surface
prevents ATGL binding.

New exciting findings indicate that Cidea and Fsp27 may exert
cellular dual functions as both proteins were reported to localize in
nuclei [80,81]. However, a nuclear localization signal (NLS) sequence
has yet to be identified and tested in these proteins, leaving the

underlying mechanisms for their nuclear translocation to be investi-
gated. Human Cidea sequence analysis reveals two potential motifs
for nuclear receptor binding [80]. Cidea is shown to bind to LXR in
in vitro and ex vivo systems and to repress LXR-regulated reported
constructs in 3T3-L1 [80]. Interestingly, LXRs have been implicated
in lipolytic regulation in several studies [53]. The increased in basal
lipolysis caused by LXR was dependent on the decreased expression
of Plinl. Cidea nuclear activity may also be important to regulate
human adipose LD hydrolysis.

In addition, Cidea acts as a transcriptional co-activator regulating
mouse mammary gland secretion of milk lipids by directly interacting
with CCAAT/enhancer-binding protein (C/EBP-3) in mammary epithelial
cells and in BAT [81]. Fsp27 was also found to interact with C/EBP-p in
differentiated 3T3-L1 cells and BAT [81]. Intriguingly, recent studies
suggested an unexpected and additional function for Fsp27, regulating
nuclear factor of activated-T cells 5 (NFAT5) intracellular localization
and downstream signaling [82]. NFAT5 is a member of the Rel family
of transcription factors localized in the cytosol, activated in response
to osmotic stress and translocating to the nuclei where it regulates
osmoprotective and inflammatory genes such as MCP1 and TNF-c, two
major proteins known to be involved in chronic inflammation associated
with adipose insulin resistance [20]. Protein—protein interaction between
Fsp27 and NFAT5 was identified in a yeast two-hybrid screen. NFAT5 has
a highly conserved NLS sequence motif, playing an important role in the
nuclear translocation. Over-expression of Fsp27 decreases the nuclear
trafficking of NFAT5 after induction of cellular hypertonic stress and
inhibited NFAT5 transcriptional activation of MCP1. Future investiga-
tions are needed to show how these functions of Fsp27, LD growth
and regulation of NFAT5, integrate in physiological conditions or in obe-
sity and T2D.

Overall, these novel findings support an interesting emerging con-
cept of LD proteins playing a role in nuclear transcription.

4.1.4. Links between Cidea and Fsp27/Cidec with insulin sensitivity and
energy homeostasis

Fsp27 null mice were generated independently by two laboratories
[83,84]. Phenotypic consequences of Fsp27 loss of function are similar
to those observed in Plin1-null mice, including reduced fat mass, in-
creased lipolysis and increased adipocyte [3-oxidation [83]. Isolated adi-
pocytes from Fsp27 null mice showed elevated constitutive lipolysis,
attenuated p-adrenergic-stimulation and elevated lipid oxidation with
up-regulated mitochondrial activity [83]. Fsp27 null mice have increased
energy expenditure and are protected from genetic or diet-induced obe-
sity [83,84]. A noticeable difference at the cellular level between Plin1
and Fsp27 null mice was the observation that Fsp27 null white adipocytes
contained multilocular droplets while they remain unilocular in Plin1
null. Plin1 null mice develop insulin resistance by 6 months, but Fsp27
null mice remained insulin sensitive through a 4-month study duration.
It remains un-tested if absence of Fsp27 impacts glucose homeostasis at
a later age. However, insulin sensitivity of the leptin deficient ob/ob
mice was improved with Fsp27 deficiency. Thus, while both Plin1 and
Fsp27 deficiency in mice affects adipose LD size, LD hydrolysis and
[3-oxidation, it appears to result in different outcomes for systemic insulin
sensitivity, perhaps because of differences in degree of compensatory
increase of adipose mitochondria 3-oxidation or in levels of adipokine
and cytokine secretion.

Cidea null mice exhibit increased lipolysis in BAT and are resistant
to high fat diet-induced obesity and diabetes, an indication that Cidea
may share some of the function of Fsp27 in this tissue [85].

A rare homozygous nonsense mutation in the human Cidec gene
resulting in a truncated protein unable to bind to LDs was recently iden-
tified in one patient. Unlike mice but similar to human PLIN mutations,
this human CIDEC mutation was found to be associated with partial
lipodystrophy, T2D, hypertriglyceridemia, and hepatic steatosis [86].
Furthermore, adipose expression levels of human Cidea and Cidec were
found positively correlated with insulin sensitivity in obese patients
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matched for BMI [70]. These human studies appear to be in contradiction
with transgenic murine models and future studies are needed to confirm
if this discrepancy between mice and man indicates the existence of
species-specific differences in the compensatory metabolic response to
defects in LD biology.

4.3. Scaffolding proteins enriched in adipose LD proteome and role
controlling LD size

4.3.1. Caveolins and cavins, potential key players in adipose LD size

Caveolins (cav) and cavins (cavin) are primarily known as the two
major protein components of caveolae, invaginations in the plasma
membranes (PM) of most mammalian cell types. They are particularly
abundant in white adipocytes where they are thought to play an im-
portant role in lipid metabolism [87-90]. It was proposed that some
subtypes of caveolae are discrete sites of TG synthesis in adipose tissue
plasma membranes, a possible tissue specific adaptation to adipose
high TG volume storage [89]. In addition, while cav-1 and -2 and
cavin-1 are highly expressed in adipose tissues and localized at the
PM, a direct association of caveolins with the LD surface was reported
by several groups [91-93]. Furthermore, evidence now support interac-
tions of cav-1 and cavin-1 with LD proteins involved in the lipolytic
pathway. Co-immunoprecipitation experiments revealed close associa-
tion of cav-1 with Plin1 but not Plin2, underscoring a unique and
specialized structural lipid/protein organization of the adipose LD
surface [94,95,92]. Finally, cavin-1, present in the adipose prote-
ome, was reported to interact with HSL in primary human adipocytes
and suggested to act in concert with HSL to regulate lipolysis [96].

Overall these studies support a role for cav-1 and cavin-1 in adipo-
cyte “ins and outs” of NEFA and thus as potential key regulators of LD
size. This was confirmed by observations that LD cav-1 protein expres-
sion is positively correlated with adipocyte LD size and that absence of
cav-1 or cavin-1 in mice and humans results in a marked reduction of
adipocyte LD size [95,97-101]. The reasons why adipocytes remain
atrophic in the total absence of cav-1 are not linked to overt alterations
in food intake, nutrient absorption or energy expenditure, and this
triggered an interest to understand the basis for relationship existing
between caveolins, cavins and adipose LD size.

Caveolae have a requirement for cholesterol for their role in PM,
and cav-1 is known to interact with cholesterol in membranes
[102]. Changes in free cholesterol LD surface content could affect
lipid surface composition and interactions with LD surface proteins,
thus potentially altering LD growth. This was tested by comparing LD
proteomes from cav-1 deficient and wild-type adipocytes [43]. Indeed,
relative abundance of surface phospholipid species, phosphatidylserine
and lysophospholipids, is reduced in cav-1 deficient cells. But analysis of
the cav-1 null adipocyte LD proteome indicated that undetected pro-
teins were only those normally found in association with cav-1 in the
caveolae protein complex, including EH-domain containing 2 (EHD2)
and cavin-1 as well as some cytoskeleton proteins [43]. These results
confirmed integrity of caveolae structure at the LD surface. However,
the qualitative proteomic approach cannot entirely rule out subtle dif-
ferences in LD protein composition that may still affect LD growth or
maintenance.

Cav-1 and cavin-1 may control adipose LD size via lipolysis.
Caveolae structures and expression of caveolar proteins in white
adipocytes are increased with fasting, and their interactions with
key players in the lipolytic pathway were established [94-96]. But
primary isolated cav-1 deficient adipocytes also lacking cavin-1
have an impaired B-adrenergic agonist-stimulated lipolysis and a
specific impairment in PKA-dependent Plin1 and HSL phosphorylation
[94]. In contrast, cav-1 deficient MEF cells retained cavin-1 expression,
have enhanced [3-adrenergic stimulated lipolysis without alteration in
PKA-Plin1 or HSL phosphorylation [ 103]. These results point to differen-
tial functions for cav-1 and cavin-1, and a potential role of cavin-1 in
regulation of lipolysis, but fail to explain the lower LD size observed in

the primary cav-1 deficient adipocytes. Finally, it was reported that
cav-1 deficient adipocytes have increased autophagy but it remains to
be experimentally demonstrated whether this mechanism contributes
to decreased LD size by channeling LD lipids to lysosomal degradation
[104].

Discrepancies between in vivo and in vitro experiments raise con-
cerns that perhaps the decreased adipose LD size observed in the
cav-1 null mice may only be secondary to adipose lipotoxicity, induced
by absence of caveolae to protect the adipocyte against fluctuations of
NEFA traffic in and out [97]. Adipose lipotoxicity could be responsible
for a detrimental sequence of events observed in cav-1 null mice, in-
cluding release of cytokines, macrophage infiltration and development
of fibrosis and lipoatrophy. However, expression of endothelium-
derived caveolin in the caveolin KO mice curtailed macrophage infiltra-
tion and local levels of cytokines (except adipose secreted PAI-1) with-
out rescuing the lipoatrophy phenotype, an indication that cav-1 and or
cavin-1 may control LD size in absence of severe local inflammation
[105].

Overall, the specific mechanism(s) enabling cav-1 and cavin-1 to
control LD size remains difficult to tease apart as these proteins are
assembled in the caveolae structure and absence of one of these pro-
teins effects expression of the others and hence the caveolae structure
itself. Future studies are needed to elucidate how cav-1 and cavin-1
regulate adipose LD size, their intracellular dynamics and the details
of their interactions with other players of the LD hydrolysis.

4.3.2. Links between caveolins, cavins and insulin sensitivity and energy
homeostasis

Mice lacking cav-1 are lean, have progressive lipoatrophy, and are
hyperlipidemic, insulin-resistant and resistant to diet-induced obesity
[94]. Mice lacking cavin-1 have a similar phenotype, albeit they develop
hyperinsulinemia between 8 and 12 weeks of age [97]. The aggravated
systemic phenotype of the cavin-1 null may be a consequence of the ab-
sence of skeletal muscle caveolae in this transgenic model [97].

In agreement with mice, a human homozygous null mutation in the
CAV-1 gene was identified in one patient associated with near absence
of adipose tissues, severe insulin resistance, T2D and dyslipidemia [98].
Additional heterozygous mutations were later identified with partial
lipodystrophy [99]. Cavin-1 homozygous mutations were identified in
21 patients to cause congenital generalized lipodystrophy, associated
in some of these patients with additional skeletal and cardiac muscle
pathologies [100,101]. Interestingly, when examined, signs for adipose
tissue macrophage infiltration and fibrosis were observed in human ad-
ipose tissue histological samples from CAV-1 and cavin-1 null mutation
carriers. The identification of these mutations provides strong human
genetic evidence for a critical role of these proteins in adipocyte lipid
storage and systemic glucose/lipid homeostasis.

5. Conclusions

The white adipocyte has been termed the “professional” lipid
storage cell [106], a reference to its long accepted function in
whole organisms. Recent advances in LD biology have underscored
the importance of LD associated proteins in tissue-specific lipid stor-
age and utilization. Comparatively few adipocyte-specific proteins,
associated with LDs within fat cells, have been identified to control
lipid stores so far. Although the exact roles of these proteins, espe-
cially Cidec, Cidea, cav-1 and cavin-1 remain to be clarified all these
proteins facilitate sequestration of circulating NEFAs in the form of
esterified lipids, control NEFA release when needed, and prevent
metabolic complications due to lipotoxicity. The cellular distribution
of these proteins ranging from largely only PM and LD for cav-1 and
cavin-1, only ER and LD for Cidea and Cidec and finally exclusively LD
for Plin1, revealed structural organization specific to the adipocyte pre-
sumed to maximize the efficiency and coordination of unesterified lipid
flux in and out of cells (Table 1). Genetic ablation of these proteins,
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Dynamics of known LD surface-associated proteins and key interaction partners in adipocyte found associated with positive/negative energy balance or with obesity/insulin resis-

tance state.

PM Cytosol ER LD surface
Positive energy balance Cav-1 HSL Cidec ATGL
Cavin-1 ATGL Cidec
Cavin-1 Plin1
Cav-1
CGI-58

Protein interactions Cavin-1 — HSL Cav-1 — Plinl
CGI-58 — Plinl

Negative energy balance Cav-1 CGI-58 (?) Cidec HSL-P
Cavin-1 Cidec
ATGL

Plin1-P
CGI-58

Protein interactions Plin1-P — HSL-P
CGI-58 — ATGL (?)

Obesity/insulin resistance Cav-1 (?) HSL Cidec (?) Cav-1
Cavin-1 (?) ATGL (?) Cavin-1
Cavin-1 (?) Plin1
CGI-58 (?) Cidec

ATGL (?)

CGI-58(?)

Protein interactions

Cavin-1 — HSL (?)

CGI-58 — ATGL (?)

LD proteomic studies have identified a handful of murine white adipose specific lipid droplet proteins, perilipin 1 (Plin1), Cidec, Caveolin-1 (Cav-1) and Cavin-1, all sharing activ-
ities in LD growth and lipolysis. Cellular distribution of these proteins indicates importance of close spatial relationships between plasma membranes (PM), endoplasmic reticulum
(ER) and lipid droplet (LD) surface to support the unique “professional” role of adipose LD to store a high volume of circulating unesterified lipids while preventing local cellular
lipotoxicity. Font size represents relative amount of protein. P indicates if protein is phosphorylated. Protein expression, distribution or interaction not yet experimentally demon-
strated is noted with a question mark. Bold and font size represents relative amount of proteins.

whether by design in mice or by nature in humans, results in various de-
grees of lipoatrophy and lipodystrophy, insulin resistance, dyslipidemia
and increased adipose tissue inflammation. Expression and distribution
of these proteins are found altered in insulin resistance associated
with obesity, but dynamics of these proteins and their respective
protein interactions need to be identified (Table 1).

Abnormal adipose LD growth may stunt the ability to recruit and
mature new adipocytes by either initiating a pro-inflammatory micro-
environment or preventing release of yet uncharacterized sensing
mechanisms whereby once adipocytes reach a critical volume they
secrete factors essential to promote the recruitment of new adipocytes.
While studying LD associated proteins has highlighted their importance
to maintain adipose LD growth and integrity, they are also valuable to
open the door to a better understanding to adipose tissue lipid storage
expandability in health and metabolic diseases.
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