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Abstract

The balance between energy intake and energy expenditure establishes and preserves

a ‘set-point’ body weight. The latter is comprised of three major components including
metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the
cellular dissipation of energy via heat production. This process has been extensively
characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1)
creates a proton leak across the inner mitochondrial membrane, diverting protons away
from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal
muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been
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shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling
pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle
and post-prandial thermogenesis has been associated with UCP3 and the futile calcium
cycling. This review will focus on the differential contributions of adipose tissue and
skeletal muscle in determining total thermogenic output and energy expenditure in
large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather
possess white fat depots that contain brown and beige adipocytes interspersed amongst

white adipose tissue. This is representative of humans, where brown, beige and white

adipocytes have been identified in the neck and supraclavicular regions. This review will
describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of
skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger

mammals.

Introduction

The worldwide incidence of obesity has rapidly escalated
and shows little sign of diminution; in 2017 the World
Obesity Federation (WOF) estimated that over 600 million
individuals were classified as obese (http://www.obesityday.
worldobesity.org/). High rates of obesity are associated
with greater economic burden (Tremmel et al. 2017) due to
increased risk of type 2 diabetes (Bhupathiraju & Hu 2016),
cardiovascular disease (Fuster et al. 2016, Ortega et al.
2016), cancer (LeRoith et al. 2008, Bhaskaran et al. 2014,
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Garg et al. 2014), Alzheimer’s disease (Alford et al. 2017)
and mental illness (Hillman et al. 2010). The WOF
estimates that by 2025, the estimated cost of obesity, if left
untreated, will almost reach $1.2 trillion as global obesity
numbers are set to rise to approximately 850 million
(http://www.obesityday.worldobesity.org/). In effort to
curb this alarming rise, it is imperative to understand the
pathophysiology of obesity and the mechanisms that
confound long-term weight loss.
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It is widely recognised that body conformation is
highly heritable and over 600 genes contribute to weight
control (Perusse et al. 2005). It has been estimated that
40-70% of the innate variation in body mass index
is determined by an individual’s genetic background
(Locke et al. 2015). Mutations in genes encoding various
neuroendocrine factors including leptin, the leptin
receptor, pro-opiomelanocortin (POMC), POMC post-
translational processing enzymes and the melanocortin
4 receptor (MC4R) cause obesity in both humans and
rodents (Jackson et al. 1997, Montague et al. 1997,
Clement et al. 1998, Krude et al. 1998, Farooqi et al. 2003).
Despite this, monogenetic mutations are extremely
rare (Farooqi 2008). To add further complexity, pre-
conception and early life environments impact on body
mass via epigenetic modifications (Lillycrop & Burdge
2010) such as those to the tripartite motif-containing 28
(TRIM28) gene, which correlates with increased adiposity
in humans (Dalgaard et al. 2016). Dogma now stipulates
that various genetic and epigenetic factors lead to
inherent susceptibility to become obese, which is typically
unmasked by environmental pressure. Irrespective of
this, it is well recognised that, once obese, it is extremely
difficult to lose weight and maintain weight loss, due to
homeostatic defence mechanisms that reset hunger and
energy expenditure.

Early weight loss trials suggested that only 2% of
the population could maintain long-term weight loss, at
the two-year time point, in response to diet and exercise
interventions (Stunkard & McLaren-Hume 1959).
Successful weight loss is defined as >10% reduction in
body weight, which is maintained for 1 year (Wing &
Hill 2001, Wing & Phelan 2005). Numerous endocrine
and neuroendocrine adaptations occur in response
to weight loss, driving increased hunger and reduced
energy expenditure (Lewis et al. 1993, Bi et al. 2003,
Yu et al. 2009, Sumithran et al. 2011). In response to
weight loss, circulating levels of the gut-derived appetite-
stimulating hormone ghrelin are increased, whereas
satiety factors such as leptin, amylin, cholecystokinin
and glucagon-like peptide 1 are decreased (Sumithran
et al. 2011). Importantly, this maladaptation in the
secretion of numerous endocrine factors persists for
up to 2 years post-weight loss (Sumithran et al. 2011).
The aforementioned endocrine factors exert reciprocal
effects on food intake and energy expenditure, where
hormones that increase food intake typically reduce
energy expenditure and vice versa (Kirchner et al. 2012,
Park & Ahima 2015, Bauer et al. 2016). Thus, weight-
loss-induced changes in circulating factors not only
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act to increase hunger but exert a dual effect to reduce
energy expenditure, which predisposes individuals to
regain lost weight (Leibel et al. 1995, Ravussin et al.
1988, Bosy-Westphal et al. 2013). A key component of
the decrease in energy expenditure is reduced adaptive
thermogenesis (Rosenbaum et al. 2008, Camps et al.
2015, Henry et al. 2017), which occurs in both skeletal
muscle and brown adipose tissue (BAT). To investigate
the specific metabolic adaptations that underlie these
changes in thermogenesis at the tissue and molecular
level, it is pertinent to use animal models. Rodents
including mice, rats and hamsters have provided
invaluable information to this field with widespread use
of transgenic, optogenetic and knockout models (Lutz
& Woods 2012, Barrett et al. 2016). The current review,
however, will focus on metabolic flexibility of genetically
heterogeneous or outbred populations of large animals,
specifically sheep (Ovis aries) and pigs (Sus) and the role
of thermogenesis in innate predisposition to obesity or
inherent resistance to diet-induced weight loss.

Mechanisms of thermogenesis

Brown adipose tissue

Body weight is determined by the balance between
energy intake and energy expenditure, with the latter
comprised of basal metabolic rate, physical activity
and adaptive thermogenesis. Adaptive thermogenesis is
defined as specialised heat production and occurs in BAT
and skeletal muscle. Cold- and meal-associated stimuli
are perceived by the brain, leading to activation of the
sympathetic nervous system (SNS) and the induction
of thermogenesis (Lowell & Spiegelman 2000, Cannon
& Nedergaard 2004). Noradrenaline is released within
BAT and activates uncoupling protein 1 (UCP1), which
creates a proton leak across the inner mitochondrial
membrane. This proton leak redirects protons away
from ATP synthase and the production of ATP; cellular
energy is dissipated in the form of heat (Fig. 1) (Cannon
& Nedergaard 2004).

Across the lifespan, mice and rats retain a defined and
circumscribed brown fat depot located in the interscapular
region (Sbarbati et al. 1991, Morroni et al. 1995). This
contrasts with larger adult mammals, including humans
and sheep, where brown adipocytes are interspersed
amongst white adipose tissue (WAT) (Cypess et al. 2013,
Henryetal.2017).Indeed, for many years, dogma stipulated
that in humans BAT was only abundant during early life,
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being fundamental to maintaining core body temperature
in neonates (Aherne & Hull 1966, Heaton 1972, Cannon
& Nedergaard 2004). Soon after birth, muscle acquires the
ability to provide heat through shivering and thus BAT
levels rapidly decline and were thought to be negligible
in adult humans (Cunningham et al. 1985, Astrup
1986). A series of landmark papers have since identified
pockets or islands of BAT particularly within the neck
and supraclavicular region of adults (Nedergaard et al.
2007, Cypess et al. 2009, van Marken Lichtenbelt et al.
2009). These depots not only contain brown and white
adipocytes, but also the morphologically distinct beige
adipocytes (discussed in detail in the following section)
(Sharp et al. 2012, Cypess et al. 2013, Jespersen et al.
2013, Nedergaard & Cannon 2013, Lee et al. 2014a).
Functional BAT has since been observed in epicardial,
paravertebral and perirenal adipose tissues (Cypess et al.
2015, Gaborit et al. 2015), although the physiological
relevance of these depots to energy homeostasis remains
to be elucidated.

Skeletal muscle

In addition to BAT, skeletal muscle is thermogenic, which
occurs independent of UCP1. Myocytes express the
UCP1 homologue, UCP3, which is capable of uncoupling
oxidative phosphorylation in mitochondria isolated from
yeast cells (Gong et al. 1997). In addition to mitochondrial
uncoupling, skeletal muscle produces heat via futile
calcium cycling (Simonides et al. 2001, de Meis et al. 2005,
Arruda et al. 2007, Clarke et al. 2012, Blondin et al. 2017)
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Figure 1

Schematic of mitochondrial uncoupling and the
cellular process of thermogenesis. Metabolic
processes such as glycolysis, p-oxidation and the
citric acid cycle contribute electrons through the
nicotinamide adenine dinucleotide (NAD+) and
flavin adenine dinucleotide (FAD*) carriers to the
electron transport chain. The action of the
electron transport chain (complexes I-IV) results
in the pumping of protons across the inner
mitochondrial membrane from the matrix into
the intermembrane space and the establishment
of the electrochemical gradient. Normally, this
proton motive force is harnessed by ATP synthase
to produce ATP from ADP. UCPs provide an
alternative means through which protons can
cross the inner membrane. Fatty acids activate
UCPs by binding to a hydrophobic pocket within
the protein that increases proton conductance.
The leak of protons across the inner
mitochondrial membrane results in the
dissipation of energy through heat production.
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where calcium exits the sarcoendoplasmic reticulum (SR)
via the ryanodine receptor (RyR). To maintain cytosolic
calcium levels, activation of the sarcoendoplasmic
reticulum ATPases (SERCA) propel calcium back into
the SR; this effect is driven by the hydrolysis of ATP and
results in heat production (Arruda et al. 2007, Bal et al.
2012) (Fig. 2). In rodents, sarcolipin is an endogenous
activator of SERCA, which uncouples calcium transport
from the hydrolysis of ATP, leading to an increase in the
futile cycling of calcium and heat production (Fig. 2). In
the absence of BAT (surgical removal) or UCP1 (genetic
deletion), sarcolipin increases muscle thermogenesis and
is essential for cold adaptation (Bal et al. 2012, 2016).
Over-expression of sarcolipin in skeletal muscle increases
oxygen consumption and fatty acid oxidation, which is
associated with resistance to weight gain in mice fed a
high fat diet (Maurya et al. 2015). The role of sarcolipin in
thermogenesis in larger mammals, however, is relatively
unexplored and requires closer investigation. Given
that skeletal muscle accounts for approximately 40% of
total body mass, it is hypothesised that, at least in large
mammals, even small differences in muscle thermogenesis
may contribute substantially to thermogenic capacity
and total energy expenditure. Indeed, earlier work
in adult humans suggested that skeletal muscle was
the primary means of thermogenesis in response to
sympathomimetic treatment (Astrup et al. 1985, Astrup
1986); ephedrine-induced thermogenesis is 10 fold higher
in skeletal muscle than adipose tissue. It is important to
emphasise, however, that this earlier work did not study
adipose tissue in the neck and clavicular regions, where
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Schematic representation of futile calcium-cycling-mediated
thermogenesis. At rest, the passive leak of calcium from the
sarcoendoplasmic reticulum (SR) occurs via the ryanodine receptor. To
maintain intracellular calcium homeostasis, calcium is propelled back into
the SR via the sarcoendoplasmic reticulum ATPase (SERCA) pump. The
movement of calcium against the concentration gradient requires the
hydrolysis of ATP, which is thermogenic and produces heat. Sarcolipin is a
key regulator of SERCA and activates thermogenesis via the futile calcium
pathway.

brown/beige adipocytes are most abundant. Nonetheless,
PET-CT studies in lean humans show that chronic low
dose ephedrine treatment actually reduces BAT activity
(Carey et al. 2015), which strongly suggests that tissues
such as a skeletal muscle are important in whole body
thermogenesis in humans.

On the other hand, the contribution of skeletal
muscle to cold-induced adaptive thermogenesis in
humans remains unclear. In obese and lean subjects,
BAT is activated by cold exposure (Saito et al. 2009,
van Marken Lichtenbelt et al. 2009, Wijers et al. 2010).
In BAT, cold exposure increases UCPI levels with a
concomitant increase in BAT activity, whereas in skeletal
muscle there is no effect of cold on the expression
of UCP3. Despite this, in lean men, cold exposure
increases uncoupled respiration in permeabilised muscle
fibres, which correlates with total energy expenditure
(Wijers et al. 2008). Furthermore, in humans, skeletal
muscle accounts for the vast majority of increased
glucose uptake and utilisation during cold exposure
compared to BAT (Blondin et al. 2015). A recent study,
however, suggests that after 4 weeks of cold exposure,
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muscle-derived adaptive non-shivering thermogenesis
is inhibited in favour of BAT thermogenesis (Blondin
et al. 2017). This increase in BAT thermogenic capacity
obviates the need for increased adaptive thermogenesis
in skeletal muscle. Irrespective of the role of skeletal
muscle in long-term cold adaptation, current evidence
supports the notion that skeletal muscle is an important
determinant of thermogenic capacity and contributes to
total energy expenditure in adult humans.

Beige adipocytes

As alluded to above, adipose tissue is heterogeneous,
containing numerous cell types. White adipocytes are
unilocular, containing one large lipid droplet and few
mitochondria, whereas brown adipocytes are multilocular
and have numerous mitochondria (Cousin et al. 1992,
Cinti 2001, Barbatelli et al. 2010). More recently, a third
adipocyte, the beige cell has been identified (Himms-
Hagen et al. 2000, Barbatelli et al. 2010). Beige adipocytes
exhibit an intermediary phenotype and are referred to
as paucilocular, as these cells contain more than one
lipid droplet and multiple mitochondria (Himms-Hagen
et al. 2000, Barbatelli et al. 2010). Beige adipocytes also
express UCPI and have been termed ‘recruitable’ as these
cells can be detected in small clusters within WAT in
response to certain stimuli, such as cold (Shabalina et al.
2013, Lee et al. 2014a, Jankovic et al. 2015). Brown and
beige adipocytes display distinct genetic fingerprints
and importantly unlike brown adipocytes that show
high basal expression of thermogenic genes such as
UCP1, beige adipocytes only exhibit these genes in
response to activating stimuli including cold and
p-adrenoceptor agonists (Walden et al. 2012, Wu et al.
2012, Rosenwald et al. 2013). Furthermore, unlike brown
adipocytes, which are derived from Myf5 +ve precursor
cells, beige adipocytes are derived from bipotent
preadipocytes (Seale et al. 2008, Sanchez-Gurmaches et al.
2012, Harms & Seale 2013, Wang et al. 2013). The beige
cell represents a novel adipocyte that contributes to
thermogenesis in both rodents and humans (Cohen &
Spiegelman 2015).

In addition to UCPI1-dependent thermogenesis,
beige adipocytes produce heat through futile creatine
(Fig. 3) (Kazak et al. 2015, Bertholet et al. 2017) and
futile calcium cycling pathways (Ikeda et al. 2017)
(Fig. 2). In mice, proteomic analyses revealed a beige
adipocyte-specific arginine-creatine metabolic pathway
(Kazak et al. 2015), which is upregulated in response to
cold exposure. Futile creatine cycling is important in
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Figure 3

Schematic diagram depicting the futile creatine cycle. Within
mitochondria, thermogenesis can occur in the ADP-depleted state via
creatine cycling. Creatine is phosphorylated by creatine kinase (CK) and
then dephosphorylated. The responsible phosphatase is currently
unidentified. The process of creatine dephosphorylation is thermogenic
via the hydrolysis of ATP.

beige adipocyte thermogenesis in ADP-depleted states,
wherein this pathway drives the hydrolysis of ATP and
thus increases oxygen consumption (Kazak et al. 2015).
Cold exposure for 1 week increased the expression of
both creatine kinase U-type, mitochondrial (CkmtI) and
creatine kinase S-type, mitochondrial (Ckmt2) in inguinal
beige adipocytes, indicative of an upregulation in creatine
cycling. Furthermore, treatment with the p3-adrenoceptor
agonist, CL316 234, induced Ucpl-expressing beige
adipocytes in the inguinal fat depot, as well as Ucpl-
negative, Ckmt2-positive beige adipocytes in epididymal
fat (Bertholet et al. 2017). Murine beige adipocytes
also produce heat via futile calcium cycling and the
activation of SERCA2b (Ikeda et al. 2017). Inhibition or
downregulation of SERCA2b in inguinal adipose tissue
attenuates the noradrenaline-induced increase in oxygen
consumption (Ikeda et al. 2017), supporting the notion
that futile calcium cycling is important in sympathetic-
induced thermogenesis in beige adipocytes. To date,
the vast majority of studies have utilised UCP1 protein
or mRNA expression as a marker for beige adipocytes,
and thus the abundance and importance of these cells
have likely been underestimated. It is now apparent
that multiple pathways contribute to thermogenesis in
these unique beige cells. The role of beige adipocytes
in determining thermogenesis and energy expenditure
in larger mammals including sheep and pigs, however,
requires further interrogation.
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Neuroendocrine control of energy balance

Control of adaptive thermogenesis is mediated by the
hypothalamus, and while only explained briefly here,
has been well detailed by Morrison (Morrison 2016).
In rodents, when exposed to cold, thermosensory
inputs act via the median preoptic area to stimulate
the dorsomedial hypothalamus (DMH) to
sympathetic nerve activity to BAT through the rostral
raphe pallidus (rRPa) (Hermann et al. 1997, Yoshida et al.
2009, Yu et al. 2016). Earlier work identified a subset of
cold-inhibited and warm-activated GABA-containing
neurons within the preoptic area that mediate cold-
induced thermogenesis (Nakamura & Morrison 2007).
Development of Designer Receptor Exclusivity Activated
by Designer Drugs (DREADD) technology has allowed for
further characterisation of these temperature-sensitive
neurons. Use of DREADDS suggests that activation of
GABA neurons in the preoptic area has little effect on
body temperature or energy expenditure (Yu et al.
2016). Indeed, these studies show that leptin-receptor-
expressing neurons in the preoptic area are integral to
ambient temperature-induced metabolic (food intake
and energy expenditure) adaptations (Yu et al. 2016).
Within the preoptic area, there is clearly topographical
neuronal organisation as cold exposure increases c-Fos
levels in GABA neurons within the ventral part of the
lateral preoptic area (Zhao et al. 2017) and optogenetic
manipulation of these neurons influences body
temperature. Optogenetic inhibition of this subset of
GABA neurons causes hyperthermia, whereas activation
of the same reduces body temperature (Zhao et al. 2017).
Thus, within the preoptic area, there is an integrated
network of neurons, including both GABA-ergic and
leptin responsive cells, capable of sensing changes in skin
temperature and modifying thermogenic output.

In addition to the aforementioned temperature-
sensitive pathway, metabolic factors such as leptin,
insulin and ghrelin modulate thermogenic activity
via hypothalamic appetite-regulating peptides. Blood-
borne factors can diffuse across the blood brain barrier
via fenestrated capillaries and act directly on neurons
in the arcuate nucleus (Banks 2009). The diffusion of
metabolic hormones is controlled by local tanycytes
(Balland & Cowley 2017). Importantly, two distinct sets
of neurons are found in the arcuate nucleus, being either
orexigenic or those that elicit satiety. The POMC neurons
are activated by leptin (Elias et al. 1999, Cowley et al.
2001) and insulin (Claret et al. 2007, Williams et al.
2010), leading to release of a-melanocyte-stimulating

increase
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hormone (aMSH), which elicits satiety via the MC4R in
the paraventricular nucleus (PVN) (Cowley et al. 1999,
Balthasar et al. 2005). A second population of neurons
contain neuropeptide Y (NPY) and agouti-related protein
(AgRP), which stimulate food intake in response to
direct stimulation by ghrelin (Kamegai et al. 2001). The
primary role of NPY/AgRP neurons is to protect against
starvation; genetic deletion of AgRP reduces food intake
and causes wasting, eventually leading to starvation and
death (Luquet et al. 2005). NPY exerts an immediate
effect to stimulate food intake, primarily via action at Y1
receptors in the PVN (Kask et al. 1998). On the other hand,
AgRP acts as an inverse agonist at the MC4R to stimulate
food intake (Nijenhuis et al. 2001). Hypothalamic
appetite-regulating peptides exert reciprocal control
to modulate food intake and energy expenditure, in
particular BAT and muscle thermogenesis (Verty et al.
2010, Gavini et al. 2016). Indeed, pseudorabies-tracing
studies show that appetite-regulating neurons of the
hypothalamus ultimately project to neural networks
controlling sympathetic outflow to peripheral tissues
including BAT (Bamshad et al. 1999, Oldfield et al. 2002,
Song et al. 2009, Ryu et al. 2015).

As mentioned earlier, activation of the SNS and the
release of catecholamines, in particular, noradrenaline
are fundamental to BAT thermogenesis. Indeed, genetic
deletion of all three B-adrenergic receptors (BAR) in brown
adipocytes of mice causes profound obesity by negating
thermogenesis (Bachman et al. 2002). Interestingly, in
humans, isoprenaline (a non-specific BAR) treatment
increases energy expenditure without an associated
activation of BAT (Vosselman et al. 2012). Similarly,
blockade of the BAR with propranolol had no effect on
cold-induced BAT thermogenesis in humans (Wijers et al.
2011). This lack of effect, however, is likely due to
receptor specificity as both isoprenaline and propranolol
show preferential agonistic and antagonistic affinity
to the p1AR and B2AR, respectively. Indeed, in healthy
lean men, administration of the B3AR-specific agonist,
mirabregon, activates BAT and causes a concurrent
increase in resting metabolic rate (Cypess et al. 2015).
Furthermore, a 64 Trp/Arg genetic polymorphism in
the p3AR is linked to the decline in BAT function with
ageing in men (Yoneshiro et al. 2012). Together, these
studies highlight that in humans, the p3AR is essential to
catecholamine-mediated BAT thermogenesis. It remains
possible, however, that the effects of isoprenaline to
increase energy expenditure via the p1/p2 AR (Vosselman
etal. 2012) are mediated via skeletal muscle thermogenesis
(Blaak et al. 1993).
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In addition to catecholamines, thyroid hormones
(TH) are notable endocrine regulators of BAT activity.
Brown adipocytes contain the deiodinase type 2 (DIO2)
enzyme, allowing for local conversion of thyroxine (T4)
to triiodothyronine (T3) (Carvalho et al. 1991); T3 exhibits
greater biological potency than T4. In rodents, TH act
directly at nuclear thyroid hormone receptors located in
brown adipocytes to transcriptionally upregulate UCP1
expression (Weiner et al. 2017). Furthermore, clinical
data demonstrate that BAT activity is higher in the
subclinical hyperthyroid state than in the hypothyroid
state (Broeders et al. 2016), supporting the notion that
endogenous TH regulate BAT thermogenesis. Although
the classical action of T3 is thought to be peripherally
mediated, more recent studies have shown that TH can
also act centrally within the hypothalamus to regulate
BAT thermogenesis. Tanycytes in the mediobasal
hypothalamus express DIO2 and thus convert T4
to T3 (Coppola et al. 2007). Furthermore, in mice,
intracerebroventricular administration of T3 increases
BAT thermogenesis via reduced hypothalamic levels of
AMP kinase (AMPK) and subsequent activation of the SNS
(Lopez et al. 2010). Indeed, sub-chronic (6 days) central
administration of T3 leads to browning of WAT in mice
(Alvarez-Crespo et al. 2016).

To date, much of the work defining the regulation of
thermogenesis and its contribution to energy balance has
been in rodents. This has provided invaluable information
and understanding of the neuroendocrine mechanisms
that control thermogenesis. More recently, a number of
large animal models have been employed including pigs
and sheep, which provide further insight into the role of
thermogenesis in long-term regulation of body weight in
mammalian species.

Regulation and significance of
thermogenesis in pigs

It is well recognised that pigs lack a functional UCP1
protein (Hou et al. 2017), which previously led to the
assumption that this species did not possess brown
adipocytes. Pigs, specifically those belonging to the Suidae
species, do not have exons 3-5 of the UCP1 gene, rendering
animals prone to hypothermia-induced death as neonates
(Berg et al. 2006). With only exons 1 and 2, UCP1 can
still be transcribed; however, protein translation does
not occur (Hou et al. 2017). Hence, previous histological
studies failed to detect UCP1 protein immunoreactivity
at baseline (Rowlatt et al. 1971) or in response to cold
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exposure (Trayhurn et al. 1989), and thus pigs were
deemed to be lacking BAT. It has since been proposed
that pigs do indeed possess functional BAT, however,
adaptive thermogenesis occurs via UCPIl-independent
mechanisms (Ikeda et al. 2017, Lin et al. 2017). Indeed,
recent work comparing cold-tolerant Tibetan pigs to
cold-sensitive Bama pigs has provided direct evidence
of adaptive thermogenesis in subcutaneous (SWAT) and
perirenal WAT (Lin et al. 2017) (Fig. 4). Both of these pig
breeds lack UCPI expression, yet when subjected to cold
exposure (4°C for 4h) PET-CT identified metabolically
active subcutaneous and perirenal adipose tissue (Lin
etal. 2017) in cold-tolerant animals, which contributed to
the maintenance of core body temperature. Furthermore,
morphological studies show that in response to cold
exposure, subcutaneous adipose tissue displays evidence
for beige cell recruitment with an increase in multilocular
adipocytes, increased mitochondrial DNA copy number
and increased expression of PGCla and the beige
cell marker CD137 (Wu et al. 2012, Lin et al. 2017).
Furthermore, in Tibetan pigs (cold tolerant), cold exposure
increased the expression of the UCP3 gene and protein
in isolated subcutaneous adipocytes and this is associated
with increased uncoupled respiration, providing evidence
to suggest an increase in UCP3-driven thermogenesis (Lin
etal. 2017) (Fig. 4).

The contribution of UCP3 to brown fat thermogenesis
has been contentious and appears to be dependent on the

Bama pig

Cold-sensitive
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species studied. In mice, earlier work suggested that BAT
thermogenesis was dependent on UCP1 (Matthias et al.
2000). Despite this, hamsters that lack functional UCP3
specifically in brown adipocytes have increased propensity
to weight gain, which is indicative of a reduction in
energy expenditure (Fromme et al. 2009). Although
innate differences in UCP3 expression in adipose tissue of
pigs have been linked to cold tolerance, to date, there are
no data on BAT-specific UCP3 function and the control of
body weight in this species.

In addition to UCP3-associated uncoupling and
thermogenesis, recent data suggest that SERCA-driven
beige cell thermogenesis also occurs in pigs. Indeed,
the work by Ikeda et al. (Ikeda et al. 2017) demonstrate
strong conservation of the beige adipocyte SERCA2b
pathway across species. Retroviral expression of PRDM-
16 in subcutaneous porcine adipocytes increases the
expression of beige-cell-specific markers including CIDEA
and TMEM26 (Ikeda et al. 2017). Furthermore, decreased
SERCA2b expression reduced basal and noradrenaline-
induced oxygen consumption
acidification rates in isolated pig adipocytes (Ikeda
et al. 2017). Thus, it is now clear that adipose tissue
thermogenesis and the associated energy expenditure
are not solely mediated via UCP1 and mitochondrial
uncoupling, but in fact, a number of cellular pathways,
across both adipose tissue and skeletal muscle, act in
concert to determine total thermogenic potential.

and extracellular
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Figure 4

Role of thermogenesis in determining cold
tolerance in pigs. Tibetan pigs are cold tolerant
and this coincides with the recruitment of beige
adipocytes in subcutaneous WAT in response to
cold exposure. Although pigs do not that express
functional uncoupling protein (UCP) 1, adipocytes
exhibit UCP3 and this mediates mitochondrial
uncoupling and adipose tissue thermogenesis. In
contrast the Bama pig is unable to induce
‘browning’ in WAT of white adipose tissue and
thus is characterized as cold sensitive. *Denotes
findings from beige adipocytes differentiated
from primary adipocytes of subcutaneous WAT.
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Role of thermogenesis in sheep

In lambs, the expression of UCPI is maximal in perirenal
adipose tissue on the first postnatal day, rapidly declining
with the expansion of WAT (Symonds 2013, Pope et al.
2014). Mapping of UCP1 mRNA in lambs shows abundant
expression in sternal and retroperitoneal adipose depots
compared to omental fat, which is a predominantly WAT
depot (Symonds et al. 2012). Indeed, adult sheep retain
UCP1 expression in both sternal and retroperitoneal fat
and this coincides with post-prandial heat production,
albeit this response is greater in the sternal fat depot
(Henry et al. 2017). This coincides with the expression
of UCP1 protein, where UCP1-positive brown-like
adipocytes were only detectable in sternal adipose tissue
of adult ewes (Henry et al. 2017). Data logger temperature
probes have been employed to measure longitudinal heat
production in multiple tissues to index thermogenic
output in sheep. Sheep are a grazing species and therefore
do not display typical meal-associated excursions such as
changes in ghrelin secretion. Despite this, temporal food
restriction in sheep entrains a pre-prandial rise in ghrelin
(Sugino et al. 2002, Takahashi et al. 2008) and post-
prandial increases in thermogenesis in skeletal muscle and
adipose tissue (Henry et al. 2008, 2017), similar to what is
seen in humans (Johnston et al. 2002, Stob et al. 2007, van
Baak 2008). In adult sheep, post-prandial skeletal muscle
thermogenesis is associated with increased expression
of UCP3 as well as an increase in protein and/or gene
expression of markers of futile calcium cycling (Clarke
et al. 2012). Furthermore, post-prandial thermogenesis in
both skeletal muscle and retroperitoneal adipose depots
is markedly enhanced by intracerebroventricular infusion
of leptin (Henry et al. 2008). Thus, in spite of relatively
low levels of UCP1 in adult sheep, skeletal muscle and
specific adipose depots retain thermogenic capacity.
Over recent years, we have utilised the sheep to dissect
the differential roles of adipose tissue and skeletal muscle
thermogenesis in the long-term control of body weight,
which is discussed in detail in the following section.

Role of thermogenesis in controlling long-term
changes of body weight in sheep

Similar to other species, ovine body weight can be readily
manipulated through dietary management (Henry et al.
2000, 2017, Igbal et al. 2001, 2003). Sheep are ruminants
and thus body weight is increased through feeding a high-
energy diet enriched in lupin grain and oats. Diet-induced
obesity, however, is not associated with any change in
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heat production in adipose tissues or skeletal muscle of
sheep (Henry et al. 2017). On the other hand, long-term
food restriction and low body weight are associated with
a homeostatic decrease in thermogenesis in sternal and
retroperitoneal adipose tissue and skeletal muscle (Henry
et al. 2017) (Fig. 5). Importantly, similar to humans, the
reduction in thermogenesis caused by food restriction
and low body weight is still evident at one year post-
weight loss, which suggests that homeostatic changes in
thermogenesis contribute to impaired weight loss and
increased long-term weight regain (Henry et al. 2017).
The homeostatic reduction in thermogenesis is
coordinated by the hypothalamus. Long-term weight
loss in ovariectomised ewes increases the expression of
the orexigenic neuropeptides NPY in the arcuate nucleus
and melanin-concentrating hormone (MCH) in the lateral
hypothalamus (LH) to increase hunger and reduce energy
expenditure (Henry et al. 2000) (Fig. 5). Regarding the
anorexigenic melanocortin pathway, the effect of low
body weight on the expression of POMC is controversial
with data showing a decrease (Backholer et al. 2010) or
no effect (Henry et al. 2000). This is not surprising since
POMC is the precursor to multiple neuropeptides, only
one of which includes aMSH and the ultimate end product
is dependent on post-translational processing (Mountjoy
2010). On the other hand, increased Agrp and Npy

Hypothalamus

f MecH

¥ NPy AgRP

Retroperitoneal fat

Skeletal muscle

Long-te rm Temperature probe

welgh_t loss Post-prandial
via ‘ thermogenesis
caloric

restriction
Sternal fat

RESULT: t Hunger 1 Energy expenditure

Figure 5

Effect of chronic food restriction and weight loss on adaptive
thermogenesis in ewes. Tissue temperature recordings show that caloric
restriction and low body weight cause a homeostatic decrease in night
time thermogenesis in ovariectomised ewes. This metabolic adaptation
occurs in both sternal adipose tissue (adipose tissue enriched in
uncoupling protein 1) and skeletal muscle and to a lesser extent in
retroperitoneal adipose tissue. The reduction in thermogenesis is
associated with increased expression of neuropeptide Y (NPY) in the
arcuate nucleus and melanin-concentrating hormone (MCH) in the lateral
hypothalamus.
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expression and reduced Pomc mRNA have been observed
in rodents (Bi et al. 2003, Rogers et al. 2016) and lambs
(McShane et al. 1993). Thus, weight-loss-induced changes
in hypothalamic gene expression are likely to reduce
thermogenesis, whilst causing a concurrent increase in
hunger drive. This represents a homeostatic mechanism
to protect against weight loss and promote weight regain
in calorie-restricted individuals.

Polygenic models of predisposition to obesity in
sheep

Over thousands of years of domestication, the modern
sheep has undergone much human-imposed selection
to the point that there exists polygenic populations
predisposed to either obesity or leanness (Afonso &
Thompson 1996, Morris et al. 1997). Animals were
originally selected for innate differences in adiposity by
measuring back fat thickness and two lines were created
via selective breeding strategies. A key feature of the
genetically lean and obese sheep is an inherent difference
in the growth hormone (GH) axis, where lean animals
have increased mean GH concentration in plasma and an
associated increase in pituitary gland weight (Francis et al.
1998). The increase in pituitary gland weight is primarily
due to a greater number of cells in the lean animals
(Francis et al. 2000). Furthermore, expression of GH
and the GH secretagogue receptor (GHSR) is greater in
genetically lean sheep, indicating differential responses
to ghrelin, an agonist of the GHSR (French et al. 2006).
This suggests that innate differences in the set-point of
the GH axis may underpin differences in adiposity in the
genetically lean and obese sheep; however, this is only
one aspect that could contribute to this phenotype.
Interestingly, food intake is similar in genetically
lean and obese sheep as is the expression of POMC,
Leptin Receptor and NPY in the arcuate nucleus. On the
other hand, lean animals have elevated post-prandial
thermogenesis in retroperitoneal adipose tissue and this
coincides with increased expression of UCPI in this tissue
(Henry et al. 2015). The divergence in thermogenesis
is specific to adipose tissue since post-prandial
thermogenesis is similar in genetically lean and obese
animals (Henry et al. 2015). Despite similar expression
of appetite-regulating peptides in the arcuate nucleus of
the hypothalamus, genetically lean sheep have increased
expression of MCH and pre-pro-orexin (ORX) in the LH
compared to obese animals (Anukulkitch et al. 2010).
While both neuropeptides are considered orexigenic
(Shimada et al. 1998, Hara et al. 2001, Ito et al. 2003,
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Segal-Lieberman et al. 2003), MCH and orexin have
differing effects on energy expenditure (Teske et al. 2008).
Deletion of MCH in mice results in hypophagia and a
lean phenotype (Shimada et al. 1998), while deletion of
ORX leads to obesity despite also causing hypophagia
(Hara et al. 2001). Orexin is critical in the embryonic
development of BAT in mice (Sellayah ef al. 2011), and
loss of orexin neurons impairs stress- (Zhang et al. 2010)
and cold-induced thermogenesis (Mohammed et al.
2016). Thus, increased expression of ORX in the LH of lean
sheep may be an important physiological determinant of
increased thermogenesis in retroperitoneal fat and the
associated changes in adiposity.

The stress axis, cortisol responsiveness and obesity
in sheep

It is widely recognised that there is marked variation in
the glucocorticoid response to stress or activation of the
hypothalamo-pituitary adrenal (HPA) axis (Cockrem 2013,
Walker et al. 2017). The activity of the HPA axis in response
to stress is impacted on by age (Sapolsky et al. 1986a,b,
Turner et al. 2010), pregnancy (Brunton & Russell 2011),
lactation (Tilbrook & Clarke 2006), sex (Turner et al. 2010)
and sex steroids (Turner et al. 2002, 2006). Nonetheless,
in any given population individuals can be characterised
as either high (HR) or low (LR) glucocorticoid responders
(Epel et al. 2001, Newman et al. 2007, Knott et al. 2008,
Touma et al. 2008, Lee et al. 2014b). It is important
to note that female LR and HR sheep have similar
basal plasma cortisol concentration and divergence in
glucocorticoid secretion only occurs in response to ACTH
or stress (Lee et al. 2014c, Hewagalamulage et al. 2016).
Previous studies have suggested that obesity itself causes
perturbation of the HPA axis with impaired glucocorticoid-
negative feedback (Jessop et al. 2001) and hypersecretion
of cortisol in response to corticotropin-releasing factor
(CRF) or stress (Marin et al. 1992, Pasquali et al. 1993,
Rosmond et al. 1998). Furthermore, cortisol directly
impacts on metabolic function; however, this will not be
addressed in the current review. Initial studies in rams show
that high cortisol response to adrenocorticotropin (ACTH)
is associated with lower feed-conversion efficiency (Knott
et al. 2008). Furthermore, in rams, adiposity is correlated
to cortisol responses to ACTH (Knott et al. 2008). More
recent work shows that identification of high (HR) and low
(LR) cortisol responders in female sheep can predict altered
propensity to gain weight when exposed to a high-energy
diet, where HR gain more adipose tissue than LR (Lee et al.
2014b). Thus, at least in female sheep, data suggest that
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cortisol responses can be used as a physiological marker
that predicts propensity to become obese.

Previous studies in women suggest that HR eat
more after a stressful episode than LR (Epel et al. 2001).
Furthermore, HR individuals display preference for
foods of high fat and sugar in response to psychological
stress (Tomiyama et al. 2011). Similarly, in ewes,
baseline food intake is similar in LR and HR, but HR
eat more following either psychosocial (barking dog)
or immune (lipopolysaccharide exposure) stressors (Lee
et al. 2014c). In addition to altered food intake, HR ewes
have reduced thermogenesis in skeletal muscle only; in
response to meal feeding, post-prandial thermogenesis
in skeletal muscle is greater in LR than in HR (Lee et al.
2014b). This again exemplifies divergence in the control
of adipose tissue and skeletal muscle thermogenesis
(Fig. 6).

Gene expression analyses reveal that LR and HR exhibit
differences in ‘set-point’ in a number of hypothalamic
systems. For example, at baseline in the non-stressed
resting state, HR individuals show an overall upregulation
of the HPA axis, with increased expression of CRF and
arginine vasopressin, but reduced expression of oxytocin
in the PVN (Hewagalamulage et al. 2016). In addition
to altered expression of genes within the HPA axis, a
key neuroendocrine feature of the LR and HR animals
is altered expression of the MC3R and MC4R in the PVN
(Fig. 6). Reduced MC4R expression coincides with the
development of melanocortin resistance. Central infusion
of leptin reduces food intake in both LR and HR animals,
but intracerebroventricular infusion of aMSH reduces
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Cortlsolt ' b _: =
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food intake in LR only. Thus, reduced MC4R expression
appears to be central to the metabolic phenotype of HR
that confers increased propensity to become obese in HR
individuals (Fig. 6). Interestingly, gene expression of NPY,
AgRP and POMC in the arcuate nucleus is equivalent in LR
and HR (Hewagalamulage ef al. 2015). Hence, differences
in the control of food intake and thermogenesis are
most likely manifest at the level of the melanocortin
receptor. Indeed, previous work in sheep has shown
the MC4R to be central in mediating the reduction in
food intake caused by immune challenge (Sartin et al.
2008). Furthermore, in rodents, direct injection of the
melanocortin agonist melanotan II into the ventromedial
nucleus of the hypothalamus increases skeletal muscle
thermogenesis (Gavini et al. 2016). We propose that
reduced expression of the MC4R in HR animals underpins
the metabolic phenotype wherein food intake is relatively
increased in response to stress and reduced post-prandial
thermogenesis in skeletal muscle is associated with
propensity to become obese.

Conclusion

Historically, thermogenesis was considered to primarily
occur in brown adipocytes and was solely driven by UCP1.
It is now recognised that beige adipocytes and skeletal
muscle also contribute to total thermogenic capacity and
that thermogenesis is differentially regulated in these
tissues. Indeed, in beige adipocytes, thermogenesis occurs
via three distinct mechanisms, with these being UCP1-

Figure 6

Schematic depiction of the altered metabolic
phenotype in animals selected for either high or
low cortisol responsiveness. Sheep are
characterised as either high (HR) or low (LR)
cortisol responders when given a standardised
dose of adrenocorticotropic hormone. Animals
characterized as HR have increased propensity to
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become obese, which is associated with perturbed
control of food intake and reduced energy
expenditure. Post-prandial thermogenesis in
skeletal muscle is decreased in HR compared to LR
ewes. Furthermore, food intake in response to
stress is greater in HR than in LR and the former
are resistant to the satiety effect of alpha-
melanocyte stimulating hormone (aMSH).
High-cortisol-responding animals have reduced
expression of the melanocortin 4 receptor (MC4R)
in the paraventricular nucleus of the
hypothalamus (PVN). We propose that the
decreased levels of MC4R underpin the altered
metabolic phenotype and increased propensity to
become obese when compared to LR.

© 2018 Society for Endocrinology
Published by Bioscientifica Ltd.
Printed in Great Britain

http://joe.endocrinology-journals.org
https://doi.org/10.1530/JOE-18-0090

Downloaded from Bioscientifica.com at 06/22/2020 05:23:24AM
via free access


https://doi.org/10.1530/JOE-18-0090

Journal of

Endocrinology

driven mitochondrial uncoupling, futile creatine cycling
and futile calcium cycling. On the other hand, in skeletal
muscle, thermogenesis is associated with UCP3 and futile
calcium cycling. Unlike rodents, large mammals including
sheep and pigs do not contain a defined or circumscribed
brown fat depot but have dispersed brown adipocytes
within traditionally white fat depots. Large animals have
provided invaluable insight into alternative mechanisms
of thermogenesis. The sheep has been particularly
useful in delineating the differential role of adipose
tissue and skeletal muscle in the control of body weight.
Furthermore, sheep models have allowed characterisation
of the neuroendocrine pathways that may contribute to
altered thermogenesis. We have shown that in sheep,
both skeletal muscle and BAT differentially contribute to
thermogenesis and therefore total energy expenditure.
Changes in thermogenesis, however, do not exclusively
associate with altered gene expression at the level of the
arcuate nucleus. Indeed, decreased MC4R expression in HR
animals and reduced orexin expression in the genetically
obese animals coincide with altered thermogenic output.
This review highlights the importance of the use of large
animal models to ascertain the contribution and control
of thermogenesis in multiple tissues and the relative role
in the regulation of body weight.
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