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Abstract

The balance between energy intake and energy expenditure establishes and preserves 

a ‘set-point’ body weight. The latter is comprised of three major components including 

metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the 

cellular dissipation of energy via heat production. This process has been extensively 

characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1) 

creates a proton leak across the inner mitochondrial membrane, diverting protons away 

from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal 

muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been 

shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling 

pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle 

and post-prandial thermogenesis has been associated with UCP3 and the futile calcium 

cycling. This review will focus on the differential contributions of adipose tissue and 

skeletal muscle in determining total thermogenic output and energy expenditure in 

large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather 

possess white fat depots that contain brown and beige adipocytes interspersed amongst 

white adipose tissue. This is representative of humans, where brown, beige and white 

adipocytes have been identified in the neck and supraclavicular regions. This review will 

describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of 

skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger 

mammals.

Introduction

The worldwide incidence of obesity has rapidly escalated 
and shows little sign of diminution; in 2017 the World 
Obesity Federation (WOF) estimated that over 600 million 
individuals were classified as obese (http://www.obesityday.
worldobesity.org/). High rates of obesity are associated 
with greater economic burden (Tremmel et al. 2017) due to 
increased risk of type 2 diabetes (Bhupathiraju & Hu 2016), 
cardiovascular disease (Fuster  et  al. 2016, Ortega  et  al. 
2016), cancer (LeRoith et al. 2008, Bhaskaran et al. 2014, 

Garg  et al. 2014), Alzheimer’s disease (Alford  et al. 2017) 
and mental illness (Hillman  et  al. 2010). The WOF 
estimates that by 2025, the estimated cost of obesity, if left 
untreated, will almost reach $1.2 trillion as global obesity 
numbers are set to rise to approximately 850 million 
(http://www.obesityday.worldobesity.org/). In effort to 
curb this alarming rise, it is imperative to understand the 
pathophysiology of obesity and the mechanisms that 
confound long-term weight loss.
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It is widely recognised that body conformation is 
highly heritable and over 600 genes contribute to weight 
control (Perusse  et  al. 2005). It has been estimated that 
40–70% of the innate variation in body mass index 
is determined by an individual’s genetic background 
(Locke et al. 2015). Mutations in genes encoding various 
neuroendocrine factors including leptin, the leptin 
receptor, pro-opiomelanocortin (POMC), POMC post-
translational processing enzymes and the melanocortin 
4 receptor (MC4R) cause obesity in both humans and 
rodents (Jackson  et  al. 1997, Montague  et  al. 1997, 
Clement et al. 1998, Krude et al. 1998, Farooqi et al. 2003). 
Despite this, monogenetic mutations are extremely 
rare (Farooqi 2008). To add further complexity, pre-
conception and early life environments impact on body 
mass via epigenetic modifications (Lillycrop & Burdge 
2010) such as those to the tripartite motif-containing 28 
(TRIM28) gene, which correlates with increased adiposity 
in humans (Dalgaard et al. 2016). Dogma now stipulates 
that various genetic and epigenetic factors lead to 
inherent susceptibility to become obese, which is typically 
unmasked by environmental pressure. Irrespective of 
this, it is well recognised that, once obese, it is extremely 
difficult to lose weight and maintain weight loss, due to 
homeostatic defence mechanisms that reset hunger and 
energy expenditure.

Early weight loss trials suggested that only 2% of 
the population could maintain long-term weight loss, at 
the two-year time point, in response to diet and exercise 
interventions (Stunkard & McLaren-Hume 1959). 
Successful weight loss is defined as >10% reduction in 
body weight, which is maintained for 1 year (Wing & 
Hill 2001, Wing & Phelan 2005). Numerous endocrine 
and neuroendocrine adaptations occur in response 
to weight loss, driving increased hunger and reduced 
energy expenditure (Lewis  et  al. 1993, Bi  et  al. 2003, 
Yu  et  al. 2009, Sumithran  et  al. 2011). In response to 
weight loss, circulating levels of the gut-derived appetite-
stimulating hormone ghrelin are increased, whereas 
satiety factors such as leptin, amylin, cholecystokinin 
and glucagon-like peptide 1 are decreased (Sumithran 
et  al. 2011). Importantly, this maladaptation in the 
secretion of numerous endocrine factors persists for 
up to 2 years post-weight loss (Sumithran et al. 2011). 
The aforementioned endocrine factors exert reciprocal 
effects on food intake and energy expenditure, where 
hormones that increase food intake typically reduce 
energy expenditure and vice versa (Kirchner et al. 2012, 
Park & Ahima 2015, Bauer  et  al. 2016). Thus, weight-
loss-induced changes in circulating factors not only 

act to increase hunger but exert a dual effect to reduce 
energy expenditure, which predisposes individuals to 
regain lost weight (Leibel  et  al. 1995, Ravussin  et  al. 
1988, Bosy-Westphal  et al. 2013). A key component of 
the decrease in energy expenditure is reduced adaptive 
thermogenesis (Rosenbaum  et  al. 2008, Camps  et  al. 
2015, Henry et al. 2017), which occurs in both skeletal 
muscle and brown adipose tissue (BAT). To investigate 
the specific metabolic adaptations that underlie these 
changes in thermogenesis at the tissue and molecular 
level, it is pertinent to use animal models. Rodents 
including mice, rats and hamsters have provided 
invaluable information to this field with widespread use 
of transgenic, optogenetic and knockout models (Lutz 
& Woods 2012, Barrett et al. 2016). The current review, 
however, will focus on metabolic flexibility of genetically 
heterogeneous or outbred populations of large animals, 
specifically sheep (Ovis aries) and pigs (Sus) and the role 
of thermogenesis in innate predisposition to obesity or 
inherent resistance to diet-induced weight loss.

Mechanisms of thermogenesis

Brown adipose tissue

Body weight is determined by the balance between 
energy intake and energy expenditure, with the latter 
comprised of basal metabolic rate, physical activity 
and adaptive thermogenesis. Adaptive thermogenesis is 
defined as specialised heat production and occurs in BAT 
and skeletal muscle. Cold- and meal-associated stimuli 
are perceived by the brain, leading to activation of the 
sympathetic nervous system (SNS) and the induction 
of thermogenesis (Lowell & Spiegelman 2000, Cannon 
& Nedergaard 2004). Noradrenaline is released within 
BAT and activates uncoupling protein 1 (UCP1), which 
creates a proton leak across the inner mitochondrial 
membrane. This proton leak redirects protons away 
from ATP synthase and the production of ATP; cellular 
energy is dissipated in the form of heat (Fig. 1) (Cannon 
& Nedergaard 2004).

Across the lifespan, mice and rats retain a defined and 
circumscribed brown fat depot located in the interscapular 
region (Sbarbati  et  al. 1991, Morroni  et  al. 1995). This 
contrasts with larger adult mammals, including humans 
and sheep, where brown adipocytes are interspersed 
amongst white adipose tissue (WAT) (Cypess et al. 2013, 
Henry et al. 2017). Indeed, for many years, dogma stipulated 
that in humans BAT was only abundant during early life, 
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being fundamental to maintaining core body temperature 
in neonates (Aherne & Hull 1966, Heaton 1972, Cannon 
& Nedergaard 2004). Soon after birth, muscle acquires the 
ability to provide heat through shivering and thus BAT 
levels rapidly decline and were thought to be negligible 
in adult humans (Cunningham  et  al. 1985, Astrup 
1986). A series of landmark papers have since identified 
pockets or islands of BAT particularly within the neck 
and supraclavicular region of adults (Nedergaard  et  al. 
2007, Cypess  et  al. 2009, van Marken Lichtenbelt  et  al. 
2009). These depots not only contain brown and white 
adipocytes, but also the morphologically distinct beige 
adipocytes (discussed in detail in the following section) 
(Sharp  et  al. 2012, Cypess et  al. 2013, Jespersen  et  al. 
2013, Nedergaard & Cannon 2013, Lee  et  al. 2014a). 
Functional BAT has since been observed in epicardial, 
paravertebral and perirenal adipose tissues (Cypess  et al. 
2015, Gaborit  et  al. 2015), although the physiological 
relevance of these depots to energy homeostasis remains 
to be elucidated.

Skeletal muscle

In addition to BAT, skeletal muscle is thermogenic, which 
occurs independent of UCP1. Myocytes express the 
UCP1 homologue, UCP3, which is capable of uncoupling 
oxidative phosphorylation in mitochondria isolated from 
yeast cells (Gong et al. 1997). In addition to mitochondrial 
uncoupling, skeletal muscle produces heat via futile 
calcium cycling (Simonides et al. 2001, de Meis et al. 2005, 
Arruda et al. 2007, Clarke et al. 2012, Blondin et al. 2017) 

where calcium exits the sarcoendoplasmic reticulum (SR) 
via the ryanodine receptor (RyR). To maintain cytosolic 
calcium levels, activation of the sarcoendoplasmic 
reticulum ATPases (SERCA) propel calcium back into 
the SR; this effect is driven by the hydrolysis of ATP and 
results in heat production (Arruda et al. 2007, Bal  et al. 
2012) (Fig.  2). In rodents, sarcolipin is an endogenous 
activator of SERCA, which uncouples calcium transport 
from the hydrolysis of ATP, leading to an increase in the 
futile cycling of calcium and heat production (Fig. 2). In 
the absence of BAT (surgical removal) or UCP1 (genetic 
deletion), sarcolipin increases muscle thermogenesis and 
is essential for cold adaptation (Bal et  al. 2012, 2016). 
Over-expression of sarcolipin in skeletal muscle increases 
oxygen consumption and fatty acid oxidation, which is 
associated with resistance to weight gain in mice fed a 
high fat diet (Maurya et al. 2015). The role of sarcolipin in 
thermogenesis in larger mammals, however, is relatively 
unexplored and requires closer investigation. Given 
that skeletal muscle accounts for approximately 40% of 
total body mass, it is hypothesised that, at least in large 
mammals, even small differences in muscle thermogenesis 
may contribute substantially to thermogenic capacity 
and total energy expenditure. Indeed, earlier work 
in adult humans suggested that skeletal muscle was 
the primary means of thermogenesis in response to 
sympathomimetic treatment (Astrup  et al. 1985, Astrup 
1986); ephedrine-induced thermogenesis is 10 fold higher 
in skeletal muscle than adipose tissue. It is important to 
emphasise, however, that this earlier work did not study 
adipose tissue in the neck and clavicular regions, where 

Figure 1
Schematic of mitochondrial uncoupling and the 
cellular process of thermogenesis. Metabolic 
processes such as glycolysis, β-oxidation and the 
citric acid cycle contribute electrons through the 
nicotinamide adenine dinucleotide (NAD+) and 
flavin adenine dinucleotide (FAD+) carriers to the 
electron transport chain. The action of the 
electron transport chain (complexes I–IV) results 
in the pumping of protons across the inner 
mitochondrial membrane from the matrix into 
the intermembrane space and the establishment 
of the electrochemical gradient. Normally, this 
proton motive force is harnessed by ATP synthase 
to produce ATP from ADP. UCPs provide an 
alternative means through which protons can 
cross the inner membrane. Fatty acids activate 
UCPs by binding to a hydrophobic pocket within 
the protein that increases proton conductance. 
The leak of protons across the inner 
mitochondrial membrane results in the 
dissipation of energy through heat production.
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brown/beige adipocytes are most abundant. Nonetheless, 
PET-CT studies in lean humans show that chronic low 
dose ephedrine treatment actually reduces BAT activity 
(Carey  et al. 2015), which strongly suggests that tissues 
such as a skeletal muscle are important in whole body 
thermogenesis in humans.

On the other hand, the contribution of skeletal 
muscle to cold-induced adaptive thermogenesis in 
humans remains unclear. In obese and lean subjects, 
BAT is activated by cold exposure (Saito  et  al. 2009, 
van Marken Lichtenbelt et al. 2009, Wijers et al. 2010). 
In BAT, cold exposure increases UCP1 levels with a 
concomitant increase in BAT activity, whereas in skeletal 
muscle there is no effect of cold on the expression 
of UCP3. Despite this, in lean men, cold exposure 
increases uncoupled respiration in permeabilised muscle 
fibres, which correlates with total energy expenditure 
(Wijers  et  al. 2008). Furthermore, in humans, skeletal 
muscle accounts for the vast majority of increased 
glucose uptake and utilisation during cold exposure 
compared to BAT (Blondin  et al. 2015). A recent study, 
however, suggests that after 4  weeks of cold exposure, 

muscle-derived adaptive non-shivering thermogenesis 
is inhibited in favour of BAT thermogenesis (Blondin 
et al. 2017). This increase in BAT thermogenic capacity 
obviates the need for increased adaptive thermogenesis 
in skeletal muscle. Irrespective of the role of skeletal 
muscle in long-term cold adaptation, current evidence 
supports the notion that skeletal muscle is an important 
determinant of thermogenic capacity and contributes to 
total energy expenditure in adult humans.

Beige adipocytes

As alluded to above, adipose tissue is heterogeneous, 
containing numerous cell types. White adipocytes are 
unilocular, containing one large lipid droplet and few 
mitochondria, whereas brown adipocytes are multilocular 
and have numerous mitochondria (Cousin  et  al. 1992, 
Cinti 2001, Barbatelli et al. 2010). More recently, a third 
adipocyte, the beige cell has been identified (Himms-
Hagen et al. 2000, Barbatelli et al. 2010). Beige adipocytes 
exhibit an intermediary phenotype and are referred to 
as paucilocular, as these cells contain more than one 
lipid droplet and multiple mitochondria (Himms-Hagen 
et al. 2000, Barbatelli et al. 2010). Beige adipocytes also 
express UCP1 and have been termed ‘recruitable’ as these 
cells can be detected in small clusters within WAT in 
response to certain stimuli, such as cold (Shabalina et al. 
2013, Lee et al. 2014a, Jankovic et al. 2015). Brown and 
beige adipocytes display distinct genetic fingerprints 
and importantly unlike brown adipocytes that show 
high basal expression of thermogenic genes such as 
UCP1, beige adipocytes only exhibit these genes in 
response to activating stimuli including cold and 
β-adrenoceptor agonists (Walden  et  al. 2012, Wu  et  al. 
2012, Rosenwald et al. 2013). Furthermore, unlike brown 
adipocytes, which are derived from Myf5 +ve precursor 
cells, beige adipocytes are derived from bipotent 
preadipocytes (Seale et al. 2008, Sanchez-Gurmaches et al. 
2012, Harms & Seale 2013, Wang et al. 2013). The beige 
cell represents a novel adipocyte that contributes to 
thermogenesis in both rodents and humans (Cohen & 
Spiegelman 2015).

In addition to UCP1-dependent thermogenesis, 
beige adipocytes produce heat through futile creatine 
(Fig.  3) (Kazak  et  al. 2015, Bertholet  et  al. 2017) and 
futile calcium cycling pathways (Ikeda  et  al. 2017) 
(Fig.  2). In mice, proteomic analyses revealed a beige 
adipocyte-specific arginine-creatine metabolic pathway 
(Kazak et  al. 2015), which is upregulated in response to 
cold exposure. Futile creatine cycling is important in 

Figure 2
Schematic representation of futile calcium-cycling-mediated 
thermogenesis. At rest, the passive leak of calcium from the 
sarcoendoplasmic reticulum (SR) occurs via the ryanodine receptor. To 
maintain intracellular calcium homeostasis, calcium is propelled back into 
the SR via the sarcoendoplasmic reticulum ATPase (SERCA) pump. The 
movement of calcium against the concentration gradient requires the 
hydrolysis of ATP, which is thermogenic and produces heat. Sarcolipin is a 
key regulator of SERCA and activates thermogenesis via the futile calcium 
pathway.
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beige adipocyte thermogenesis in ADP-depleted states, 
wherein this pathway drives the hydrolysis of ATP and 
thus increases oxygen consumption (Kazak et  al. 2015). 
Cold exposure for 1  week increased the expression of 
both creatine kinase U-type, mitochondrial (Ckmt1) and 
creatine kinase S-type, mitochondrial (Ckmt2) in inguinal 
beige adipocytes, indicative of an upregulation in creatine 
cycling. Furthermore, treatment with the β3-adrenoceptor 
agonist, CL316 234, induced Ucp1-expressing beige 
adipocytes in the inguinal fat depot, as well as Ucp1-
negative, Ckmt2-positive beige adipocytes in epididymal 
fat (Bertholet et  al. 2017). Murine beige adipocytes 
also produce heat via futile calcium cycling and the 
activation of SERCA2b (Ikeda et  al. 2017). Inhibition or 
downregulation of SERCA2b in inguinal adipose tissue 
attenuates the noradrenaline-induced increase in oxygen 
consumption (Ikeda et  al. 2017), supporting the notion 
that futile calcium cycling is important in sympathetic-
induced thermogenesis in beige adipocytes. To date, 
the vast majority of studies have utilised UCP1 protein 
or mRNA expression as a marker for beige adipocytes, 
and thus the abundance and importance of these cells 
have likely been underestimated. It is now apparent 
that multiple pathways contribute to thermogenesis in 
these unique beige cells. The role of beige adipocytes 
in determining thermogenesis and energy expenditure 
in larger mammals including sheep and pigs, however, 
requires further interrogation.

Neuroendocrine control of energy balance

Control of adaptive thermogenesis is mediated by the 
hypothalamus, and while only explained briefly here, 
has been well detailed by Morrison (Morrison 2016). 
In rodents, when exposed to cold, thermosensory 
inputs act via the median preoptic area to stimulate 
the dorsomedial hypothalamus (DMH) to increase 
sympathetic nerve activity to BAT through the rostral 
raphe pallidus (rRPa) (Hermann et al. 1997, Yoshida et al. 
2009, Yu et al. 2016). Earlier work identified a subset of 
cold-inhibited and warm-activated GABA-containing 
neurons within the preoptic area that mediate cold-
induced thermogenesis (Nakamura & Morrison 2007). 
Development of Designer Receptor Exclusivity Activated 
by Designer Drugs (DREADD) technology has allowed for 
further characterisation of these temperature-sensitive 
neurons. Use of DREADDS suggests that activation of 
GABA neurons in the preoptic area has little effect on 
body temperature or energy expenditure (Yu et  al. 
2016). Indeed, these studies show that leptin-receptor-
expressing neurons in the preoptic area are integral to 
ambient temperature-induced metabolic (food intake 
and energy expenditure) adaptations (Yu et  al. 2016). 
Within the preoptic area, there is clearly topographical 
neuronal organisation as cold exposure increases c-Fos 
levels in GABA neurons within the ventral part of the 
lateral preoptic area (Zhao  et  al. 2017) and optogenetic 
manipulation of these neurons influences body 
temperature. Optogenetic inhibition of this subset of 
GABA neurons causes hyperthermia, whereas activation 
of the same reduces body temperature (Zhao et al. 2017). 
Thus, within the preoptic area, there is an integrated 
network of neurons, including both GABA-ergic and 
leptin responsive cells, capable of sensing changes in skin 
temperature and modifying thermogenic output.

In addition to the aforementioned temperature-
sensitive pathway, metabolic factors such as leptin, 
insulin and ghrelin modulate thermogenic activity 
via hypothalamic appetite-regulating peptides. Blood-
borne factors can diffuse across the blood brain barrier 
via fenestrated capillaries and act directly on neurons 
in the arcuate nucleus (Banks 2009). The diffusion of 
metabolic hormones is controlled by local tanycytes 
(Balland & Cowley 2017). Importantly, two distinct sets 
of neurons are found in the arcuate nucleus, being either 
orexigenic or those that elicit satiety. The POMC neurons 
are activated by leptin (Elias  et  al. 1999, Cowley  et  al. 
2001) and insulin (Claret  et  al. 2007, Williams  et  al. 
2010), leading to release of α-melanocyte-stimulating 

Figure 3
Schematic diagram depicting the futile creatine cycle. Within 
mitochondria, thermogenesis can occur in the ADP-depleted state via 
creatine cycling. Creatine is phosphorylated by creatine kinase (CK) and 
then dephosphorylated. The responsible phosphatase is currently 
unidentified. The process of creatine dephosphorylation is thermogenic 
via the hydrolysis of ATP.
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hormone (aMSH), which elicits satiety via the MC4R in 
the paraventricular nucleus (PVN) (Cowley  et  al. 1999, 
Balthasar  et  al. 2005). A second population of neurons 
contain neuropeptide Y (NPY) and agouti-related protein 
(AgRP), which stimulate food intake in response to 
direct stimulation by ghrelin (Kamegai et al. 2001). The 
primary role of NPY/AgRP neurons is to protect against 
starvation; genetic deletion of AgRP reduces food intake 
and causes wasting, eventually leading to starvation and 
death (Luquet  et  al. 2005). NPY exerts an immediate 
effect to stimulate food intake, primarily via action at Y1 
receptors in the PVN (Kask et al. 1998). On the other hand, 
AgRP acts as an inverse agonist at the MC4R to stimulate 
food intake (Nijenhuis  et  al. 2001). Hypothalamic 
appetite-regulating peptides exert reciprocal control 
to modulate food intake and energy expenditure, in 
particular BAT and muscle thermogenesis (Verty  et  al. 
2010, Gavini  et  al. 2016). Indeed, pseudorabies-tracing 
studies show that appetite-regulating neurons of the 
hypothalamus ultimately project to neural networks 
controlling sympathetic outflow to peripheral tissues 
including BAT (Bamshad et al. 1999, Oldfield et al. 2002, 
Song et al. 2009, Ryu et al. 2015).

As mentioned earlier, activation of the SNS and the 
release of catecholamines, in particular, noradrenaline 
are fundamental to BAT thermogenesis. Indeed, genetic 
deletion of all three β-adrenergic receptors (βAR) in brown 
adipocytes of mice causes profound obesity by negating 
thermogenesis (Bachman  et  al. 2002). Interestingly, in 
humans, isoprenaline (a non-specific βAR) treatment 
increases energy expenditure without an associated 
activation of BAT (Vosselman  et  al. 2012). Similarly, 
blockade of the βAR with propranolol had no effect on 
cold-induced BAT thermogenesis in humans (Wijers et al. 
2011). This lack of effect, however, is likely due to 
receptor specificity as both isoprenaline and propranolol 
show preferential agonistic and antagonistic affinity 
to the β1AR and β2AR, respectively. Indeed, in healthy 
lean men, administration of the β3AR-specific agonist, 
mirabregon, activates BAT and causes a concurrent 
increase in resting metabolic rate (Cypess et  al. 2015). 
Furthermore, a 64 Trp/Arg genetic polymorphism in 
the β3AR is linked to the decline in BAT function with 
ageing in men (Yoneshiro  et  al. 2012). Together, these 
studies highlight that in humans, the β3AR is essential to 
catecholamine-mediated BAT thermogenesis. It remains 
possible, however, that the effects of isoprenaline to 
increase energy expenditure via the β1/β2 AR (Vosselman 
et al. 2012) are mediated via skeletal muscle thermogenesis 
(Blaak et al. 1993).

In addition to catecholamines, thyroid hormones 
(TH) are notable endocrine regulators of BAT activity. 
Brown adipocytes contain the deiodinase type 2 (DIO2) 
enzyme, allowing for local conversion of thyroxine (T4) 
to triiodothyronine (T3) (Carvalho et al. 1991); T3 exhibits 
greater biological potency than T4. In rodents, TH act 
directly at nuclear thyroid hormone receptors located in 
brown adipocytes to transcriptionally upregulate UCP1 
expression (Weiner  et  al. 2017). Furthermore, clinical 
data demonstrate that BAT activity is higher in the 
subclinical hyperthyroid state than in the hypothyroid 
state (Broeders  et  al. 2016), supporting the notion that 
endogenous TH regulate BAT thermogenesis. Although 
the classical action of T3 is thought to be peripherally 
mediated, more recent studies have shown that TH can 
also act centrally within the hypothalamus to regulate 
BAT thermogenesis. Tanycytes in the mediobasal 
hypothalamus express DIO2 and thus convert T4 
to T3 (Coppola  et  al. 2007). Furthermore, in mice, 
intracerebroventricular administration of T3 increases 
BAT thermogenesis via reduced hypothalamic levels of 
AMP kinase (AMPK) and subsequent activation of the SNS 
(Lopez  et al. 2010). Indeed, sub-chronic (6 days) central 
administration of T3 leads to browning of WAT in mice 
(Alvarez-Crespo et al. 2016).

To date, much of the work defining the regulation of 
thermogenesis and its contribution to energy balance has 
been in rodents. This has provided invaluable information 
and understanding of the neuroendocrine mechanisms 
that control thermogenesis. More recently, a number of 
large animal models have been employed including pigs 
and sheep, which provide further insight into the role of 
thermogenesis in long-term regulation of body weight in 
mammalian species.

Regulation and significance of 
thermogenesis in pigs

It is well recognised that pigs lack a functional UCP1 
protein (Hou  et  al. 2017), which previously led to the 
assumption that this species did not possess brown 
adipocytes. Pigs, specifically those belonging to the Suidae 
species, do not have exons 3–5 of the UCP1 gene, rendering 
animals prone to hypothermia-induced death as neonates 
(Berg  et  al. 2006). With only exons 1 and 2, UCP1 can 
still be transcribed; however, protein translation does 
not occur (Hou et al. 2017). Hence, previous histological 
studies failed to detect UCP1 protein immunoreactivity 
at baseline (Rowlatt  et  al. 1971) or in response to cold 
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exposure (Trayhurn  et  al. 1989), and thus pigs were 
deemed to be lacking BAT. It has since been proposed 
that pigs do indeed possess functional BAT; however, 
adaptive thermogenesis occurs via UCP1-independent 
mechanisms (Ikeda et  al. 2017, Lin  et  al. 2017). Indeed, 
recent work comparing cold-tolerant Tibetan pigs to 
cold-sensitive Bama pigs has provided direct evidence 
of adaptive thermogenesis in subcutaneous (sWAT) and 
perirenal WAT (Lin et al. 2017) (Fig. 4). Both of these pig 
breeds lack UCP1 expression, yet when subjected to cold 
exposure (4°C for 4 h) PET-CT identified metabolically 
active subcutaneous and perirenal adipose tissue (Lin 
et al. 2017) in cold-tolerant animals, which contributed to 
the maintenance of core body temperature. Furthermore, 
morphological studies show that in response to cold 
exposure, subcutaneous adipose tissue displays evidence 
for beige cell recruitment with an increase in multilocular 
adipocytes, increased mitochondrial DNA copy number 
and increased expression of PGC1a and the beige 
cell marker CD137 (Wu et  al. 2012, Lin et  al. 2017). 
Furthermore, in Tibetan pigs (cold tolerant), cold exposure 
increased the expression of the UCP3 gene and protein 
in isolated subcutaneous adipocytes and this is associated 
with increased uncoupled respiration, providing evidence 
to suggest an increase in UCP3-driven thermogenesis (Lin 
et al. 2017) (Fig. 4).

The contribution of UCP3 to brown fat thermogenesis 
has been contentious and appears to be dependent on the 

species studied. In mice, earlier work suggested that BAT 
thermogenesis was dependent on UCP1 (Matthias  et  al. 
2000). Despite this, hamsters that lack functional UCP3 
specifically in brown adipocytes have increased propensity 
to weight gain, which is indicative of a reduction in 
energy expenditure (Fromme  et  al. 2009). Although 
innate differences in UCP3 expression in adipose tissue of 
pigs have been linked to cold tolerance, to date, there are 
no data on BAT-specific UCP3 function and the control of 
body weight in this species.

In addition to UCP3-associated uncoupling and 
thermogenesis, recent data suggest that SERCA-driven 
beige cell thermogenesis also occurs in pigs. Indeed, 
the work by Ikeda et  al. (Ikeda et  al. 2017) demonstrate 
strong conservation of the beige adipocyte SERCA2b 
pathway across species. Retroviral expression of PRDM-
16 in subcutaneous porcine adipocytes increases the 
expression of beige-cell-specific markers including CIDEA 
and TMEM26 (Ikeda et al. 2017). Furthermore, decreased 
SERCA2b expression reduced basal and noradrenaline-
induced oxygen consumption and extracellular 
acidification rates in isolated pig adipocytes (Ikeda 
et  al. 2017). Thus, it is now clear that adipose tissue 
thermogenesis and the associated energy expenditure 
are not solely mediated via UCP1 and mitochondrial 
uncoupling, but in fact, a number of cellular pathways, 
across both adipose tissue and skeletal muscle, act in 
concert to determine total thermogenic potential.

Figure 4
Role of thermogenesis in determining cold 
tolerance in pigs. Tibetan pigs are cold tolerant 
and this coincides with the recruitment of beige 
adipocytes in subcutaneous WAT in response to 
cold exposure. Although pigs do not that express 
functional uncoupling protein (UCP) 1, adipocytes 
exhibit UCP3 and this mediates mitochondrial 
uncoupling and adipose tissue thermogenesis. In 
contrast the Bama pig is unable to induce 
‘browning’ in WAT of white adipose tissue and 
thus is characterized as cold sensitive. *Denotes 
findings from beige adipocytes differentiated 
from primary adipocytes of subcutaneous WAT.
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Role of thermogenesis in sheep

In lambs, the expression of UCP1 is maximal in perirenal 
adipose tissue on the first postnatal day, rapidly declining 
with the expansion of WAT (Symonds 2013, Pope  et  al. 
2014). Mapping of UCP1 mRNA in lambs shows abundant 
expression in sternal and retroperitoneal adipose depots 
compared to omental fat, which is a predominantly WAT 
depot (Symonds  et  al. 2012). Indeed, adult sheep retain 
UCP1 expression in both sternal and retroperitoneal fat 
and this coincides with post-prandial heat production, 
albeit this response is greater in the sternal fat depot 
(Henry et  al. 2017). This coincides with the expression 
of UCP1 protein, where UCP1-positive brown-like 
adipocytes were only detectable in sternal adipose tissue 
of adult ewes (Henry et al. 2017). Data logger temperature 
probes have been employed to measure longitudinal heat 
production in multiple tissues to index thermogenic 
output in sheep. Sheep are a grazing species and therefore 
do not display typical meal-associated excursions such as 
changes in ghrelin secretion. Despite this, temporal food 
restriction in sheep entrains a pre-prandial rise in ghrelin 
(Sugino  et  al. 2002, Takahashi  et  al. 2008) and post-
prandial increases in thermogenesis in skeletal muscle and 
adipose tissue (Henry et al. 2008, 2017), similar to what is 
seen in humans (Johnston et al. 2002, Stob et al. 2007, van 
Baak 2008). In adult sheep, post-prandial skeletal muscle 
thermogenesis is associated with increased expression 
of UCP3 as well as an increase in protein and/or gene 
expression of markers of futile calcium cycling (Clarke 
et al. 2012). Furthermore, post-prandial thermogenesis in 
both skeletal muscle and retroperitoneal adipose depots 
is markedly enhanced by intracerebroventricular infusion 
of leptin (Henry et al. 2008). Thus, in spite of relatively 
low levels of UCP1 in adult sheep, skeletal muscle and 
specific adipose depots retain thermogenic capacity. 
Over recent years, we have utilised the sheep to dissect 
the differential roles of adipose tissue and skeletal muscle 
thermogenesis in the long-term control of body weight, 
which is discussed in detail in the following section.

Role of thermogenesis in controlling long-term 
changes of body weight in sheep

Similar to other species, ovine body weight can be readily 
manipulated through dietary management (Henry  et  al. 
2000, 2017, Iqbal et al. 2001, 2003). Sheep are ruminants 
and thus body weight is increased through feeding a high-
energy diet enriched in lupin grain and oats. Diet-induced 
obesity, however, is not associated with any change in 

heat production in adipose tissues or skeletal muscle of 
sheep (Henry et al. 2017). On the other hand, long-term 
food restriction and low body weight are associated with 
a homeostatic decrease in thermogenesis in sternal and 
retroperitoneal adipose tissue and skeletal muscle (Henry 
et al. 2017) (Fig. 5). Importantly, similar to humans, the 
reduction in thermogenesis caused by food restriction 
and low body weight is still evident at one year post-
weight loss, which suggests that homeostatic changes in 
thermogenesis contribute to impaired weight loss and 
increased long-term weight regain (Henry et al. 2017).

The homeostatic reduction in thermogenesis is 
coordinated by the hypothalamus. Long-term weight 
loss in ovariectomised ewes increases the expression of 
the orexigenic neuropeptides NPY in the arcuate nucleus 
and melanin-concentrating hormone (MCH) in the lateral 
hypothalamus (LH) to increase hunger and reduce energy 
expenditure (Henry et  al. 2000) (Fig.  5). Regarding the 
anorexigenic melanocortin pathway, the effect of low 
body weight on the expression of POMC is controversial 
with data showing a decrease (Backholer  et  al. 2010) or 
no effect (Henry et al. 2000). This is not surprising since 
POMC is the precursor to multiple neuropeptides, only 
one of which includes aMSH and the ultimate end product 
is dependent on post-translational processing (Mountjoy 
2010). On the other hand, increased Agrp and Npy 

Figure 5
Effect of chronic food restriction and weight loss on adaptive 
thermogenesis in ewes. Tissue temperature recordings show that caloric 
restriction and low body weight cause a homeostatic decrease in night 
time thermogenesis in ovariectomised ewes. This metabolic adaptation 
occurs in both sternal adipose tissue (adipose tissue enriched in 
uncoupling protein 1) and skeletal muscle and to a lesser extent in 
retroperitoneal adipose tissue. The reduction in thermogenesis is 
associated with increased expression of neuropeptide Y (NPY) in the 
arcuate nucleus and melanin-concentrating hormone (MCH) in the lateral 
hypothalamus.
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expression and reduced Pomc mRNA have been observed 
in rodents (Bi et al. 2003, Rogers  et al. 2016) and lambs 
(McShane et al. 1993). Thus, weight-loss-induced changes 
in hypothalamic gene expression are likely to reduce 
thermogenesis, whilst causing a concurrent increase in 
hunger drive. This represents a homeostatic mechanism 
to protect against weight loss and promote weight regain 
in calorie-restricted individuals.

Polygenic models of predisposition to obesity in 
sheep

Over thousands of years of domestication, the modern 
sheep has undergone much human-imposed selection 
to the point that there exists polygenic populations 
predisposed to either obesity or leanness (Afonso & 
Thompson 1996, Morris  et  al. 1997). Animals were 
originally selected for innate differences in adiposity by 
measuring back fat thickness and two lines were created 
via selective breeding strategies. A key feature of the 
genetically lean and obese sheep is an inherent difference 
in the growth hormone (GH) axis, where lean animals 
have increased mean GH concentration in plasma and an 
associated increase in pituitary gland weight (Francis et al. 
1998). The increase in pituitary gland weight is primarily 
due to a greater number of cells in the lean animals 
(Francis  et  al. 2000). Furthermore, expression of GH 
and the GH secretagogue receptor (GHSR) is greater in 
genetically lean sheep, indicating differential responses 
to ghrelin, an agonist of the GHSR (French  et al. 2006). 
This suggests that innate differences in the set-point of 
the GH axis may underpin differences in adiposity in the 
genetically lean and obese sheep; however, this is only 
one aspect that could contribute to this phenotype.

Interestingly, food intake is similar in genetically 
lean and obese sheep as is the expression of POMC, 
Leptin Receptor and NPY in the arcuate nucleus. On the 
other hand, lean animals have elevated post-prandial 
thermogenesis in retroperitoneal adipose tissue and this 
coincides with increased expression of UCP1 in this tissue 
(Henry  et  al. 2015). The divergence in thermogenesis 
is specific to adipose tissue since post-prandial 
thermogenesis is similar in genetically lean and obese 
animals (Henry et  al. 2015). Despite similar expression 
of appetite-regulating peptides in the arcuate nucleus of 
the hypothalamus, genetically lean sheep have increased 
expression of MCH and pre-pro-orexin (ORX) in the LH 
compared to obese animals (Anukulkitch  et  al. 2010). 
While both neuropeptides are considered orexigenic 
(Shimada  et  al. 1998, Hara  et  al. 2001, Ito  et  al. 2003, 

Segal-Lieberman  et  al. 2003), MCH and orexin have 
differing effects on energy expenditure (Teske et al. 2008). 
Deletion of MCH in mice results in hypophagia and a 
lean phenotype (Shimada et al. 1998), while deletion of 
ORX leads to obesity despite also causing hypophagia 
(Hara et  al. 2001). Orexin is critical in the embryonic 
development of BAT in mice (Sellayah  et al. 2011), and 
loss of orexin neurons impairs stress- (Zhang et al. 2010) 
and cold-induced thermogenesis (Mohammed  et  al. 
2016). Thus, increased expression of ORX in the LH of lean 
sheep may be an important physiological determinant of 
increased thermogenesis in retroperitoneal fat and the 
associated changes in adiposity.

The stress axis, cortisol responsiveness and obesity 
in sheep

It is widely recognised that there is marked variation in 
the glucocorticoid response to stress or activation of the 
hypothalamo-pituitary adrenal (HPA) axis (Cockrem 2013, 
Walker et al. 2017). The activity of the HPA axis in response 
to stress is impacted on by age (Sapolsky  et  al. 1986a,b, 
Turner et al. 2010), pregnancy (Brunton & Russell 2011), 
lactation (Tilbrook & Clarke 2006), sex (Turner et al. 2010) 
and sex steroids (Turner  et  al. 2002, 2006). Nonetheless, 
in any given population individuals can be characterised 
as either high (HR) or low (LR) glucocorticoid responders 
(Epel  et al. 2001, Newman  et al. 2007, Knott  et al. 2008, 
Touma  et  al. 2008, Lee  et  al. 2014b). It is important 
to note that female LR and HR sheep have similar 
basal plasma cortisol concentration and divergence in 
glucocorticoid secretion only occurs in response to ACTH 
or stress (Lee  et  al. 2014c, Hewagalamulage  et  al. 2016). 
Previous studies have suggested that obesity itself causes 
perturbation of the HPA axis with impaired glucocorticoid-
negative feedback (Jessop et al. 2001) and hypersecretion 
of cortisol in response to corticotropin-releasing factor 
(CRF) or stress (Mårin  et  al. 1992, Pasquali  et  al. 1993, 
Rosmond  et  al. 1998). Furthermore, cortisol directly 
impacts on metabolic function; however, this will not be 
addressed in the current review. Initial studies in rams show 
that high cortisol response to adrenocorticotropin (ACTH) 
is associated with lower feed-conversion efficiency (Knott 
et al. 2008). Furthermore, in rams, adiposity is correlated 
to cortisol responses to ACTH (Knott et  al. 2008). More 
recent work shows that identification of high (HR) and low 
(LR) cortisol responders in female sheep can predict altered 
propensity to gain weight when exposed to a high-energy 
diet, where HR gain more adipose tissue than LR (Lee et al. 
2014b). Thus, at least in female sheep, data suggest that 
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cortisol responses can be used as a physiological marker 
that predicts propensity to become obese.

Previous studies in women suggest that HR eat 
more after a stressful episode than LR (Epel et al. 2001). 
Furthermore, HR individuals display preference for 
foods of high fat and sugar in response to psychological 
stress (Tomiyama  et  al. 2011). Similarly, in ewes, 
baseline food intake is similar in LR and HR, but HR 
eat more following either psychosocial (barking dog) 
or immune (lipopolysaccharide exposure) stressors (Lee 
et al. 2014c). In addition to altered food intake, HR ewes 
have reduced thermogenesis in skeletal muscle only; in 
response to meal feeding, post-prandial thermogenesis 
in skeletal muscle is greater in LR than in HR (Lee et al. 
2014b). This again exemplifies divergence in the control 
of adipose tissue and skeletal muscle thermogenesis 
(Fig. 6).

Gene expression analyses reveal that LR and HR exhibit 
differences in ‘set-point’ in a number of hypothalamic 
systems. For example, at baseline in the non-stressed 
resting state, HR individuals show an overall upregulation 
of the HPA axis, with increased expression of CRF and 
arginine vasopressin, but reduced expression of oxytocin 
in the PVN (Hewagalamulage et  al. 2016). In addition 
to altered expression of genes within the HPA axis, a 
key neuroendocrine feature of the LR and HR animals 
is altered expression of the MC3R and MC4R in the PVN 
(Fig.  6). Reduced MC4R expression coincides with the 
development of melanocortin resistance. Central infusion 
of leptin reduces food intake in both LR and HR animals, 
but intracerebroventricular infusion of aMSH reduces 

food intake in LR only. Thus, reduced MC4R expression 
appears to be central to the metabolic phenotype of HR 
that confers increased propensity to become obese in HR 
individuals (Fig. 6). Interestingly, gene expression of NPY, 
AgRP and POMC in the arcuate nucleus is equivalent in LR 
and HR (Hewagalamulage et al. 2015). Hence, differences 
in the control of food intake and thermogenesis are 
most likely manifest at the level of the melanocortin 
receptor. Indeed, previous work in sheep has shown 
the MC4R to be central in mediating the reduction in 
food intake caused by immune challenge (Sartin  et  al. 
2008). Furthermore, in rodents, direct injection of the 
melanocortin agonist melanotan II into the ventromedial 
nucleus of the hypothalamus increases skeletal muscle 
thermogenesis (Gavini et  al. 2016). We propose that 
reduced expression of the MC4R in HR animals underpins 
the metabolic phenotype wherein food intake is relatively 
increased in response to stress and reduced post-prandial 
thermogenesis in skeletal muscle is associated with 
propensity to become obese.

Conclusion

Historically, thermogenesis was considered to primarily 
occur in brown adipocytes and was solely driven by UCP1. 
It is now recognised that beige adipocytes and skeletal 
muscle also contribute to total thermogenic capacity and 
that thermogenesis is differentially regulated in these 
tissues. Indeed, in beige adipocytes, thermogenesis occurs 
via three distinct mechanisms, with these being UCP1-

Figure 6
Schematic depiction of the altered metabolic 
phenotype in animals selected for either high or 
low cortisol responsiveness. Sheep are 
characterised as either high (HR) or low (LR) 
cortisol responders when given a standardised 
dose of adrenocorticotropic hormone. Animals 
characterized as HR have increased propensity to 
become obese, which is associated with perturbed 
control of food intake and reduced energy 
expenditure. Post-prandial thermogenesis in 
skeletal muscle is decreased in HR compared to LR 
ewes. Furthermore, food intake in response to 
stress is greater in HR than in LR and the former 
are resistant to the satiety effect of alpha-
melanocyte stimulating hormone (aMSH). 
High-cortisol-responding animals have reduced 
expression of the melanocortin 4 receptor (MC4R) 
in the paraventricular nucleus of the 
hypothalamus (PVN). We propose that the 
decreased levels of MC4R underpin the altered 
metabolic phenotype and increased propensity to 
become obese when compared to LR.
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driven mitochondrial uncoupling, futile creatine cycling 
and futile calcium cycling. On the other hand, in skeletal 
muscle, thermogenesis is associated with UCP3 and futile 
calcium cycling. Unlike rodents, large mammals including 
sheep and pigs do not contain a defined or circumscribed 
brown fat depot but have dispersed brown adipocytes 
within traditionally white fat depots. Large animals have 
provided invaluable insight into alternative mechanisms 
of thermogenesis. The sheep has been particularly 
useful in delineating the differential role of adipose 
tissue and skeletal muscle in the control of body weight. 
Furthermore, sheep models have allowed characterisation 
of the neuroendocrine pathways that may contribute to 
altered thermogenesis. We have shown that in sheep, 
both skeletal muscle and BAT differentially contribute to 
thermogenesis and therefore total energy expenditure. 
Changes in thermogenesis, however, do not exclusively 
associate with altered gene expression at the level of the 
arcuate nucleus. Indeed, decreased MC4R expression in HR 
animals and reduced orexin expression in the genetically 
obese animals coincide with altered thermogenic output. 
This review highlights the importance of the use of large 
animal models to ascertain the contribution and control 
of thermogenesis in multiple tissues and the relative role 
in the regulation of body weight.
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