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In Brief

Beige adipocytes, which develop in white
adipose tissue (WAT), have become a
promising avenue to counteract obesity.
However, the repertoire of extracellular
signals that control beige adipogenesis
remains largely unknown. Here, Zhang
et al. show that COX-2-mediated
prostaglandins act as paracrine signals
that orchestrate beige adipogenesis and
are controlled by the mTORC1/CRTC2
pathway.
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in Raptor-deficient mice

e MTORC1 suppresses COX-2/PG pathway via a CRTC2-
dependent mechanism

Zhang et al., 2018, Cell Reports 24, 3180-3193
September 18, 2018 © 2018 The Authors. ‘ :e“
https://doi.org/10.1016/j.celrep.2018.08.055


mailto:meilianliu@salud.unm.edu
https://doi.org/10.1016/j.celrep.2018.08.055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.08.055&domain=pdf

OPEN

ACCESS
CellPress

Cell Reports

Adipose mTORC1 Suppresses Prostaglandin Signaling
and Beige Adipogenesis via the CRTC2-COX-2 Pathway

Xing Zhang,’-¢ Yan Luo,’-® Chunqging Wang,! Xiaofeng Ding,-8 Xin Yang,’ Dandan Wu,' Floyd Silva,! Zijiang Yang,'
Qin Zhou,' Lu Wang,! Xiaoging Wang,'” Jianlin Zhou,® Nathan Boyd,? Michael Spafford,® Mark Burge,*

Xuexian O. Yang,%° and Meilian Liu®-5-%-*

1Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuguerque, NM 87131, USA
2Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
3Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA

4Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA

5Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center,

Albuquerque, NM 87131, USA

6Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of
Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha,

Hunan, China

“Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
8Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal

University, Changsha, Hunan, China

9Lead Contact

*Correspondence: meilianliu@salud.unm.edu
https://doi.org/10.1016/j.celrep.2018.08.055

SUMMARY

Beige adipocytes are present in white adipose tissue
(WAT) and have thermogenic capacity to orchestrate
substantial energy metabolism and counteract
obesity. However, adipocyte-derived signals that
act on progenitor cells to control beige adipogenesis
remain poorly defined. Here, we show that adipose-
specific depletion of Raptor, a key component of
mTORC1, promoted beige adipogenesis through
prostaglandins (PGs) synthesized by cyclooxyge-
nase-2 (COX-2). Moreover, Raptor-deficient mice
were resistant to diet-induced obesity and COX-2
downregulation. Mechanistically, mTORC1 sup-
pressed COX-2 by phosphorylation of CREB-regu-
lated transcription coactivator 2 (CRTC2) and subse-
quent dissociation of CREB to cox-2 promoter in
adipocytes. PG treatment stimulated PKA and
promoted differentiation of progenitor cells to beige
adipocytes in culture. Ultimately, we show that
pharmacological inhibition or suppression of COX-2
attenuated mTORC1 inhibition-induced thermogenic
gene expression in inguinal WAT in vivo and in vitro.
Our study identifies adipocyte-derived PGs as key
regulators of white adipocyte browning, which oc-
curs through mTORC1 and CRTC2.

INTRODUCTION

Recruitment and activation of beige adipocytes (the “browning”
effect) may have potential therapeutic implications for the treat-
ment of obesity and related disorders such as insulin resistance,
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type 2 diabetes, and cardiovascular diseases (Bostrom et al.,
2012; Cohen et al., 2014; Harms and Seale, 2013; Seale et al.,
2011; Vegiopoulos et al., 2010). However, while activation of
the B3-adrenoceptor signaling pathway promotes thermogenic
gene expression in brown and beige adipocytes in rodents,
this approach is clinically not feasible due to the low efficacy of
the B3-adrenoceptor signaling agonists in humans (Bostrom
et al., 2012; Cristancho and Lazar, 2011; Farmer, 2008; Fisher
et al., 2012; White and Stephens, 2010). Thus, identifying alter-
native drug targets that specifically and effectively promote
beige adipogenesis is critical for the treatment of obesity and
associated metabolic diseases.

Cyclooxygenase (COX), a rate-limiting enzyme responsible for
the biosynthesis of prostaglandins (PGs), exists in two isoforms:
COX-1, the constitutive form, and COX-2, the inducible form
(Marnett et al., 1999). COX-2 oxygenates arachidonic acid and
converts it into a number of PGs, including PGD2, PGE2,
PGF2a and prostacyclin (PGI2), all of which exert diverse hor-
mone-like effects via autocrine or paracrine mechanisms (Mar-
nett et al., 1999). In adipose tissue (AT), the COX-2/PG pathway
is induced by cold exposure and plays a critical role in cold-
induced beige/brite adipocyte formation and browning of white
adipose tissue (WAT) (Bayindir et al., 2015; Vegiopoulos et al.,
2010). In agreement with this, PGs shift the differentiation of pro-
genitors toward a brown adipocyte phenotype (Bayindir et al.,
2015; Vegiopoulos et al., 2010). The COX-2/PG axis also plays
a critical role in regulating adipose tissue inflammation and
obesity-induced insulin resistance (Chan et al., 2016; Gartung
et al.,, 2016; Hsieh et al., 2010; Hu et al., 2016; Vegiopoulos
et al., 2010). However, whether or not the COX-2/PG pathway
is involved in the development of obesity remains an open ques-
tion given that a 25-week high-fat diet (HFD) feeding had no sig-
nificant effect on COX-2 expression in adipose tissue (Vegiopou-
los et al., 2010). In addition, COX-2 is expressed constitutively
in adipocytes as well as a variety of immune cells residing in
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adipose tissue such as macrophages, neutrophils, and T cells
(Ihiguez et al., 1999; Kim et al., 2001; Pablos et al., 1999; Pfann-
kuche et al., 1986). This raises important questions as to whether
adipocyte-derived PGs play a role in regulating adipose thermo-
genesis and maintaining energy homeostasis, and how PG
biosynthesis is regulated in adipocytes.

The mechanistic targets of rapamycin (nTOR), an intracellular
energy sensor that integrates distinct signals such as hormones,
nutrients, and stress, is a vital regulator of multiple cellular pro-
cesses such as protein translation, lipid metabolism, cell growth,
and survival (Wullschleger et al., 2006). mTOR exists in two
distinct complexes, mMTORC1 and mTORC2, which differ in sub-
unit compositions and biological function (Loewith et al., 2002).
mTORC1 contains the rapamycin-associated TOR protein
(Raptor), while mTORC2 contains the rapamycin-insensitive
companion of mTOR (Rictor) (Loewith et al., 2002). Raptor is
also a regulatory-associated protein of mTOR that binds to
and mediates mTOR action (Hara et al., 2002). Loss of Raptor
eliminates mTORC1 activity irrespective of feeding status (Sen-
gupta et al., 2010). mTORCH1 is understood to regulate multiple
metabolic processes including protein synthesis, lipogenesis,
energy expenditure, and autophagy (Laplante and Sabatini,
2012; Wullschleger et al., 2006) and is highly active in the adi-
pose tissue of obese and HFD-fed rodents (Khamzina et al.,
2005; Tremblay et al., 2005). Furthermore, over-activation of
mTORCH1 results in the development of adiposity and obesity
(Carnevalli et al., 2010; Laplante and Sabatini, 2012; Polak
et al., 2008; Um et al., 2004; Zhang et al., 2009). However, accu-
mulating evidence has raised questions regarding its role in ad-
ipose tissue thermogenesis (Labbé et al., 2016; Lee et al., 2016;
Liu et al., 2014, 2016; Polak et al., 2008; Shan et al., 2016; Tran
et al., 2016; Um et al., 2004; Wada et al., 2016). Several studies
agree that adipose inhibition of mMTORC1 leads to browning of
WAT and that overactivation of mTORC1 in adipose tissue sup-
presses thermogenesis and exacerbates diet-induced obesity
and insulin resistance in mice (Liu et al., 2014; Polak et al.,
2008; Um et al., 2004; Wada et al., 2016). However, other studies
report that inactivation of mMTORC1 in adipose tissue results in
impaired thermogenesis (Liu et al., 2016; Tran et al., 2016). While
the work from Lee, Shan, and colleagues suggests an inhibitory
effect of MTOR signaling on WAT browning, both studies argue
that adipose-specific inhibition of mMTOR or mTORC1 results in
lipodystrophy and systemic insulin resistance during postnatal
growth (Labbé et al., 2016; Lee et al., 2016; Shan et al., 2016).
In comparison to the well-studied physiological role of mMTORC1
in adipose tissue, the mechanisms by which mTORC1 regulates
adipose thermogenesis remain largely unknown.

Here, we show that adipose-specific knockout of Raptor
induces COX-2 expression and PG biosynthesis, leading to
beige adipogenesis in WAT. In support of this, activation of the
mTORC1 signaling pathway inhibits COX-2 expression and
biosynthesis of PGs including PGI2, PGD2, and PGE2. In adipo-
cytes, mTORC1 inhibits transcription of COX-2 through phos-
phorylating cyclic-AMP-responsive element-binding protein
(CREB)-regulated transcription coactivator 2 (CRTC2) at
Ser'®®. Moreover, inhibition of COX-2 blunts the effect of
mTORC1 on beige adipocyte differentiation in vivo. Collectively,
our study reveals that adipocyte mTORC1 is a key negative regu-

lator of beige adipocyte development via a CRTC2/COX-2/PG-
dependent paracrine mechanism and that activation of adipo-
cyte COX-2/PG signaling protects against diet-induced obesity.

RESULTS

Raptor Deficiency Has Differential Effects on
Thermogenic Capacity in WAT and Brown Adipose
Tissue

To address the controversy regarding the role of mTORC1 in
regulating thermogenesis, we generated adipose-specific
Raptor knockout (KO) mice using adiponectin cre mice. Consis-
tent with the previous finding that adipose-specific KO of
Raptor impairs adipose tissue development during postnatal
growth (Laplante and Sabatini, 2012; Lee et al., 2016; Liu
et al., 2016; Tran et al., 2016), we observed that 10-week-old
Raptor KO mice displayed less fat mass and exhibited lipodys-
trophy, liver steatosis, and insulin resistance under normal
chow diet conditions despite similar body mass (Figures S1A-
S1F). In agreement with the findings of others (Lee et al,,
2016; Liu et al., 2016; Tran et al., 2016), Raptor deficiency
significantly decreased levels of thermogenic markers UCP1,
PGC1a, and C/EBPB as well as adipogenic markers PPARYy
and adiponectin in brown adipose tissue (BAT) accompanied
by the occurrence of large lipid droplets in this tissue (Figures
1A and 1C). However, in inguinal WAT ((WAT) and epididymal
WAT (eWAT), adipose-specific KO of Raptor led to a robust
induction of UCP1 and C/EBP and development of multilocular
lipid droplets despite suppression of adiponectin expression
(Figures 1B, 1C-1E, and S1G). Consistent with this, the
mMRNA levels of ucp1 and c/ebp were significantly upregulated
in iIWAT of Raptor-deficient mice (Figure 1F). Although beige
markers including CD137, TBX1, and TMEM26 as well as
UCP1-independent thermogenesis markers SERCA2b and
CKMT2 were not significantly affected despite downregulation
of RyR2 and GATM, other brown markers including Coxt11,
FGF21, and Kng2 were all upregulated in the iWAT of Raptor
KO animals (Figure 1F), suggesting that mTORC1 signaling
pathway plays distinct roles in regulating thermogenic gene
expression in BAT and WAT. In agreement with this, inguinal
fat of Raptor KO mice displayed a 2-fold greater O, consump-
tion compared to controls (Figure 1G). In contrast, the brown fat
of the Raptor KO mice showed decreased O, consumption
(Figure 1G). Unexpectedly, Raptor deficiency had no significant
effect on differentiation (Figure S1H), basal and B3-adrenegic
signaling-induced UCP1, as well as the expression of PPARY
and adiponectin (Figure S1l), or O, consumption (Figures S1J
and S1K) in primary differentiated adipocytes from iWAT and
BAT. Interestingly, despite no significant difference in Raptor
expression, the stromal vascular fraction (SVF) of iWAT in
Raptor KO animals displayed a notable upregulation of UCP1
compared to control samples (Figures 1H and S1L). Moreover,
UCP1 levels were increased in the SVF to a markedly greater
extent than in the adipocyte fraction (Figures 1H and S1L).
Taken together, these results strongly suggest that the differen-
tial effects of mMTORC1 inhibition on adipose tissue develop-
ment and thermogenesis in WAT and BAT is mediated via a
non-cell-autonomous mechanism.
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Figure 1. Raptor Deficiency Has Differential
Effects on Thermogenesis in WAT and BAT

(A) The expression levels of the thermogenic and
adipogenic markers UCP1, C/EBPB, PGCila,
PPARY, and adiponectin were suppressed by Raptor
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(B) The expression levels of the thermogenic and
adipogenic markers UCP1, C/EBP@, but not PPARY
and PGC1a were induced in inguinal fat ((WAT) of
Raptor-deficient mice.

(C) H&E staining of eWAT, iWAT, BAT, and liver from
10-week-old male Raptor-deficient and control
mice.

(D) Quantification of adipocyte size in iIWAT and
eWAT of Raptor KO and control mice. Size of adi-
pocytes were determined with ImagedJ analysis of
H&E-stained tissues.

(E) Immunohistochemistry (IHC) staining of UCP1 in
iWAT and BAT from 10-week-old Raptor-deficient
and control mice.

(F) The mRNA levels of thermogenic, beige, and
brown markers in inguinal fat of Raptor-deficient
and control mice.

(G) O, consumption of inguinal and brown fat from
10-week-old Raptor-deficient and control mice.
Volume of Oo/min/mg tissue was used as the unit
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(H) The increase of UCP1 levels by Raptor defi-
ciency was greater in the stromal vascular fraction
than in adipocyte fraction in iWAT compared to the
control samples. Adip, adipocyte fraction; AT, adi-
pose tissue; SVF, stromal vascular fraction. The
data in (D)-(F) are presented as the mean + SEM.
*p < 0.05, “p < 0.01.
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Raptor Deficiency-Induced Browning of WAT Does Not
Require Sympathetic Tone

It has previously been shown that impaired BAT function pro-
motes the compensatory browning of WAT by enhancing sympa-
thetic input to WAT (Schulz et al., 2013; Shin et al., 2017). To
determine whether Raptor deficiency-induced beiging of iWAT
is caused by cross talk between BAT and WAT, we examined
the levels of tyrosine hydroxylase (TH), a key enzyme of catechol-
amine biosynthesis driven by sympathetic tone. The expression
of TH was not significantly affected by Raptor deficiency in either
BAT or iWAT (Figures 1A and 1B). Moreover, surgical denervation
led to a marked reduction of TH but had no significant effect on
Raptor deficiency-induced UCP1 and C/EBPB expression in
iWAT (Figure 2A), suggesting that Raptor deficiency-induced
beige adipocyte development in WAT is not due to altered sym-
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expression in iIWAT was blunted under
cold stress, a condition associated with
activation of sympathetic tone (Figure 2D).
In addition, Raptor-deficient mice displayed decreased levels of
UCP1 and C/EBPB in BAT under cold stress but not thermoneu-
trality (Figures 2C and 2E). In accordance with this, Raptor KO
mice displayed significantly lower O, consumption under cold
stress conditions with no significant effect on food intake and
activity (Figures 2F, S2A, and S2B). Whereas there was no signif-
icant difference in systemic O, consumption between Raptor KO
and control mice at room temperature (Figure 2F), probably due
to increased WAT browning but reduced BAT function under this
condition (Figures 1A and 1B).

Raptor Deficiency in Adipocytes Induces COX-2
Expression and PG Production In Vivo and In Vitro

To elucidate the underlying mechanism by which mTORC1
signaling regulates beige adipocyte development, we performed
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RNA-sequencing experiments on inguinal fat from 3-month-old
male Raptor KO and control mice. Principal-component analysis
(PCA) showed that three KO samples (red) were separated from
two control samples (black) (Figure S2C). A total of 11,278 genes
remained for analysis after filtering out genes with little or no
expression, and a total of 1,812 genes was differentially ex-
pressed as shown in the Volcano plot (Figure S2D). The results
of the differential expression analysis are summarized in the
heatmap (Figure 3A), which shows the gene expression signa-
tures of the most differentially expressed genes in these samples
(a larger version with the genes labeled is given in Figure S2E).
Among the differentially expressed genes, a group of inflamma-
tory cytokines or immune cell markers including Cxcl2, Tnfsf4,
Pdcd1, IL-5, IL1rl1, IL-7r, and Gata3 were elevated by Raptor
deficiency (Figure 3B), suggesting the activation of type 2 inflam-
mation, a pathway that has been well documented to be linked to
WAT browning. Given the depletion of adipocyte-specific Raptor
in these animals, our data also imply that adipocyte-derived
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paracrine signals may mediate the type
2 immunity and WAT browning in Raptor
KO WAT. Notably, Raptor deficiency
significantly upregulated PG-endoper-
oxide synthase 2 (ptgs2), known as
COX-2, which is responsible for biosyn-
thesis of PGs, a group of cyclic fatty acid
compounds with varying hormone-like
effects (Figure 3B). As the COX-2/PG
pathway plays a key role in cold-induced
browning of WAT as well as inflammation
(Hu et al., 2016; Vegiopoulos et al., 2010),
we asked whether COX-2 could mediate the promoting effect
of mTORC1 deficiency on WAT browning. In support of this,
the upregulation of ptgs2, cxcl2, pdcdi, 1l-5, and gata3 by
Raptor deficiency was validated by RT-PCR in inguinal fat (Fig-
ure 3C). Both protein and mRNA levels of COX-2 were higher
in WAT compared to BAT (Figures 3D and 3E). Moreover, Raptor
deficiency significantly upregulated protein levels of COX-2 but
not COX-1 in iWAT and eWAT (Figures 3F and 3G), suggesting
that the COX-2 pathway is downstream of mTORC1 in WAT,
whereas expression levels of COX-1 and COX-2 were only mini-
mally affected by Raptor deficiency in BAT (Figure S2F). Consis-
tent with this, levels of several PGs including PGD2, PGE2, and
PGI2 were increased in inguinal fat of Raptor KO mice, and the
increase of PGI2 level by Raptor deficiency was greater than
the increase of PGD2 and PGE2 in iWAT (Figure 3H). In support
of our in vivo data, protein levels of COX-2 were upregulated in
primary adipocytes from iWAT of Raptor KO compared to control
mice (Figure 3l). COX-2 mRNA levels and production of PGD2,
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PGE2, and PGI2 were also upregulated in Raptor KO adipocytes
compared to control cells (Figures 3J and 3K). These results indi-
cate that mTORC1 plays a critical role in regulating the COX-2/
PG pathway in a cell-autonomous manner.

Inhibition or Suppression of COX-2 Diminishes Raptor
Deficiency-Induced Development of Beige Adipocytes

in WAT

To gain insight into the role of COX-2 in Raptor deficiency-
induced beige fat development, we administered 15 mg/kg/
day celecoxib, a specific inhibitor of COX-2, to Raptor KO and
control mice for 10 days. Inhibition of COX-2 reversed the Raptor
deficiency-induced increase in protein (Figures 4A and S2G) and
mRNA (Figure 4B) levels of UCP1 in iWAT but had little effect on
thermogenic gene expression in BAT (Figure S2H), suggesting
that COX-2 mediates the inducing effect of Raptor deficiency
on the browning of WAT. In addition, COX-2 inhibition diminished
Raptor deficiency-induced development of multilocular adipo-
cytes as well as large adipocytes in both iIWAT and eWAT (Fig-
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PGE2 PGD2 PGI2

n = 3/group. The data are presented as mean +
SEM.

(F and G) The expression of COX-2 was induced in
iWAT (F) and eWAT (G) of Raptor KO mice.

(H) The secretion of PGE2, PGD2, and PGI2 was
elevated by Raptor deficiency in iWAT. The levels of
PGs were determined by ELISA with the kits.

() The expression levels of COX2 but not COX-1
were suppressed by Raptor depletion in primary
differentiated adipocytes from iWAT.

(J) mRNA levels of COX-2 were induced by Raptor
deficiency in primary adipocytes from iWAT. n = 4/
group.

(K) Secretion of PGE2, PGD2, and PGI2 in primary
Raptor KO and control adipocytes. n = 4/group. The
data in (l) was the representative data from three
individual experiments. The data in (C), (E), (H), (J),
and (K) are presented as the mean + SEM. *p < 0.05,
**p < 0.01.

ures 4C and 4D). The increased O, consumption was reversed
by COX-2 inhibition in iIWAT but not BAT of Raptor KO mice
(Figure 4E). In addition, factors from Raptor KO adipocytes
significantly induced expression of UCP1 and C/EBPJ during
differentiation of primary preadipocytes from iWAT (Figure 4F).
However, this inducing effect was suppressed by RNAi-medi-
ated knockdown of COX-2 in Raptor KO adipocytes (Figures
S2l and 4F). These data suggest that COX-2 mediates the inhib-
itory effect of mMTORC1 on beige adipocyte differentiation.

Blocking PG Signaling Alleviates Raptor Deficiency-
Induced Beige Adipogenesis in WAT

To delineate the role of PG signaling in Raptor deficiency-
induced beige adipocyte development, we administered
100 ng/kg PGD2, PGE2, or PGI2 to C57BL/6 mice through sub-
cutaneous injection for 2 days. Administration of PGD2, PGE2, or
PGI2 significantly upregulated protein levels of thermogenic
genes including ucp? and c/ebpg in inguinal fat but not in BAT
(Figures 5A and S3A). In addition, mRNA levels of UCP1 and
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2011; Mohan et al., 2012), we found that
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ENE; 0 o 5 .§ 1 m (Figures 5E and 5F). Consistent with this,
(@) oF 0 induction of UCP1 and C/EBPf by PGI2

iWAT

BAT

C/EBPB were upregulated by administration of PGD2, PGE2, or
PGI2 (Figure 5B), indicating the promoting effects of PGs on
beige adipocytes. The injection of PGI2 and PGE2 induced ther-
mogenesis to a greater extent than PGD2 treatment (Figures 5A
and 5B). Although treatment with PGD2, PGE2, or PGI2 had no
significant effect on the expression of ucp1 and c/ebpg in differ-
entiated primary adipocytes (Figure S3B), treatment of these
PGs upregulated protein and mRNA levels of UCP1 and
C/EBPS during the differentiation of primary iWAT-derived prea-
dipocytes (from day 1 to day 4) (Figures 5C, 5D, S3C, and S3D).
In support of previous findings reporting that PGE2, PGD2, and
PGI2 bind to their respective receptors and stimulate cyclic

was suppressed by PKA inhibition
following treatment with 10 uM H89 dur-
ing adipocyte differentiation (Figure 5G).
To further investigate the role of PG signaling in mTORC1 inhi-
bition-induced beige adipogenesis, we administered 2 mg/kg of
PGI2 receptor antagonist CAY10441 through intraperitoneal
(i.p.) injection in Raptor KO and control littermates for 10 days.
Inhibiting PGI2 signaling suppressed Raptor deficiency-induced
upregulation of UCP1 and C/EBP in iWAT, suggesting that PGI2
mediates the browning effect induced by Raptor deficiency (Fig-
ure 5H). Moreover, the conditioned media of primary Raptor KO
differentiated adipocytes induced the expression of UCP1 and
C/EBPB during the differentiation of primary preadipocytes, an
effect that was partially reversed by treatment with the PGI2
antagonist CAY10441 during the differentiation (Figure 5I). These
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@ 0 4 *  * as we described previously (Liu et al,
UcP1t g 2012, 2014). We found that 4-week HFD
E’ C/EBPB o feeding significantly downregulated pro-
o1 .
Embulin 290 tein and mRNA levels of COX-2 but not
CAY - + - + Ctrl KO COX-1 in iWAT (Figures 6A and 6B) and

results suggest that mTORC1 inhibition promotes the devel-
opment of beige adipocytes via a PG-mediated paracrine
mechanism.

Raptor Deficiency Protects Mice from Diet-Induced
Suppression of COX-2 and Loss of Beige Adipocytes
COX-2 has been shown to orchestrate beige/brite adipocyte for-
mation (Bayindir et al., 2015; Vegiopoulos et al., 2010). However,
its role in the development of obesity remains poorly defined. To
examine the effect of HFD feeding on adipose tissue COX-2 as
well as phosphorylation of S6K at Thr389, 6-week-old male
C57BL/6 mice were fed with 45% HFD for 4, 16, or 24 weeks
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eWAT (Figure S4A), concurrent with

increased phosphorylation of S6K at

Thr389. In contrast, HFD feeding signifi-
cantly upregulated COX-2 expression and suppressed phos-
phorylation of S6K in BAT (Figure S4B). While not statistically sig-
nificant, trending COX-2 suppression in iWAT (Figures 6C, 6D,
S4C, and S4D) and eWAT (Figures S4C-S4F) was also observed
following 16 weeks of HFD feeding, with no effect seen at
24 weeks despite persistent activation of S6K. Along this line,
mTORC1 was activated, and expression levels of COX-2 were
suppressed in the IWAT and eWAT but not in the BAT of ob/ob
mice compared to lean mice (Figures 6E and S4G). In addition,
rapamycin treatment upregulated COX-2 in human adipocytes
from neck adipose tissue (Figure 6F). Moreover, Raptor-deficient
mice were resistant to diet-induced downregulation of COX-2
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Figure 6. Adipocyte mTORC1 Inhibition Protects Mice against HFD-Induced Downregulation of COX-2 and Energy Expenditure

(A-D) 6-week-old male C57BL/6 mice were fed with normal chow diet (NCD) or HFD for 4, 16, or 24 weeks. Protein levels of COX-2 and COX-1 along with
phosphorylation of S6K (A) and mRNA level of COX-2 and COX-1 (B) in iWAT after 4-week-HFD feeding. Phosphorylation of S6K at Thr®® in iWAT (C) were
stimulated by HFD feeding for 4, 16, or 24 weeks. Conversely, the expression levels of COX-2 in iWAT (D) were suppressed by 4 or 16 weeks of HFD feeding, while
not significantly altered by 24 weeks of HFD feeding. n = 4-8/group in (C) and (D).

(E) Phosphorylation of S6K at Thr®°® was increased, and expression levels of COX-2 were suppressed in iWAT of ob/ob mice compared to lean mice. n = 5/group.
(F) Rapamycin treatment induced expression of COX-2 in human primary adipocytes from neck adipose tissue. n = 3/group.

(G) Raptor deficiency protected against the suppression of COX-2 induced by 4-week HFD and upregulated basal and HFD-induced UCP1 iniWAT in vivo. n = 5-7/group.
(H) O, consumption in Raptor KO and control mice throughout light and dark cycles on the day before HFD feeding and day 7 and day 30 after HFD feeding. The
average O, consumption was normalized to whole-body mass and analyzed using Student’s t test. (F) was the representative data from three individual ex-
periments. The data in (B)-(H) are presented as the mean + SEM. *p < 0.05.
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(Figure 6G). Consistent with this, basal and HFD-induced
expression of UCP1 in inguinal fat was significantly upregulated
in Raptor KO mice compared to control mice (Figure 6G). In addi-
tion, Raptor deficiency-induced downregulation of UCP1 in BAT
was restored under HFD feeding (Figure S4H). In accordance
with this, despite no significant effect on body weight after
4 weeks of HFD feeding, Raptor deficiency protected against
HFD-induced decrease of O, consumption with no change to
food intake or activity (Figure 6H and data not shown). Along
with this, Raptor-deficient mice were protected against diet-
induced obesity and glucose intolerance despite no significant
changes in triglyceride (TG) content in liver, hepatic steatosis,
or insulin tolerance (Figures S1A-S1F). These results together
suggest that adipocyte mTORC1 inhibition protects mice against
HFD-induced downregulation of COX-2, energy imbalance, and
obesity. However, we did not observe the induction of COX-2 by
48-hr cold exposure (6°C) despite the upregulation of UCP1 in
iWAT and BAT (Figure S6l). On the other hand, mTORC1 as
well as food intake was stimulated by cold stress (Figure S6J),
implying that cold stress activation of MTORC1 may be partially
due to the increase of food intake, and that mTORC1/COX-2
pathway is dispensable for cold-induced thermogenesis.

mTORC1 Suppresses COX-2 Expression by
Phosphorylating CRTC2 at Ser'3® in Adipocytes

Given that B-adrenergic signaling drives lipolysis and COX-2
gene activation (Gartung et al., 2016; Klein et al., 2007; Vegio-
poulos et al., 2010), we hypothesized that PKA signaling may
mediate the inhibitory effect of mMTORC1 on COX-2. We found
that treatment of rapamycin or isoproterenol significantly
induced COX-2 expression in primary preadipocytes (Figures
S5A and S5B). Moreover, inhibition of PKA by H-89 treatment
diminished the stimulatory effect of Raptor deficiency or rapa-
mycin treatment on COX-2 expression in primary adipocytes
(Figures 7A and 7B), suggesting a mediatory role of PKA
signaling in mTORC1 regulation of COX-2. However, rapamy-
cin and Raptor deficiency had no significant effect on the
phosphorylation of PKA substrates (Figure 7B). Because
mTORC1 has been shown to interact with PKA signaling
through phosphorylation of CRTC2 at Ser'®® in hepatocytes
(Han et al., 2015), we examined the effect of mTORC1 on
the localization of CRTC2 and CRTC3 in primary preadipo-
cytes. We found that both CRTC2 and CRTC3 were expressed
in preadipocytes (Figures 7C and S5C). CRTC2 is localized in
both the nucleus and the cytoplasm and CRTC3 is predomi-
nantly localized in the nucleus under growth medium-culturing
conditions (Figures 7C and S5C). Treatment with a cAMP
analog promoted CRTC2 translocation to the nucleus, while
having little effect on CRTCS3 localization (Figures 7C and
S5C). In addition, inhibition of mMTORC1 by rapamycin had
no effect on the nuclear translocation of CRTC2 (Figure 7C).
However, leucine treatment induced and rapamycin treatment
suppressed phosphorylation of CRTC2 at Ser'®® in preadipo-
cytes (Figures 7D and 7E). Moreover, Raptor deficiency sup-
pressed leucine-induced P-CRTC2 at Ser'®® in preadipocytes
(Figures 7F and S5D), suggesting that mMTORC1 may modulate
CRTC2 activity through phosphorylation rather than cellular
localization.
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Next, we investigated the potential role of mMTORC1-mediated
CRTC2 phosphorylation in regulating COX-2 expression in prea-
dipocytes given the promoting effect of CREB on cox-2 pro-
moter activation (Reddy et al., 2000; Yang and Bleich, 2004).
Suppressing CRTC2 by RNAi diminished rapamycin-induced
COX-2 expression in preadipocytes (Figures 7G and S5E). In
contrast, overexpression of CRTC2 markedly upregulated the
expression levels of COX-2 and attenuated rapamycin-induced
COX-2 expression in preadipocytes (Figure 7H). To dissect the
mediatory role of CRTC2 in mTORC1 suppression of COX-2,
we performed immunoprecipitation, chromatin immunoprecipi-
tation (ChIP) analysis, and luciferase assays. We found that rapa-
mycin treatment promoted the interaction between CRTC2 and
CREB (Figure 71), induced CREB binding to the cox-2 promoter
(Figures 7J and S5F), and enhanced luciferase activity of the
cox-2 promoter (Figure 7K) in preadipocytes. Moreover, overex-
pression of CRTC2 increased the association between CRTC2
and CREB as well as CREB binding to the cox-2 promoter, lucif-
erase activity of the cox-2 promoter, and COX-2 expression, and
diminished the inducing effect of rapamycin in preadipocytes
(Figures 7H-7K). Furthermore, the ability of CRTC2 to interact
with CREB, facilitate CREB binding to the cox-2 promoter, and
activate the cox-2 gene to induce COX-2 expression was sup-
pressed by a serine-to-aspartate mutation at 136 (S136D) but
not by a serine-to-alanine mutation (S136A) (Figures 7H-7K).
The results from this study indicate that mTORC1 suppresses
COX-2 through phosphorylation of CRTC2 at Ser'®® and subse-
quent inhibition of CREB binding to the cox-2 promoter in
adipocytes.

DISCUSSION

Beige adipocytes, which develop in WAT, have become a prom-
ising avenue to counteract obesity (Harms and Seale, 2013).
However, the adipocyte-derived signals that target progenitor
cells and control beige adipogenesis in WAT have not yet been
defined. Here, we show that COX-2-mediated PGs act as para-
crine signals that target adipocyte progenitor cells and orches-
trate beige adipogenesis. In addition, we propose that mMTORCH1
signaling is a key regulator of the COX-2/PG pathway through
phosphorylation of CRTC2 in adipocytes and mediates
obesity-induced suppression of COX-2 and beige adipogenesis
in WAT. These results reveal that adipocyte mTORC1 controls
beige adipogenesis via PG-mediated paracrine signaling, and
establish a pathway underlying the suppression of COX-2 as
well as energy imbalance during the development of obesity.
COX-2 plays a pivotal role in regulating adipose inflammation
including macrophage recruitment and subsequent immune
response and insulin resistance (Chan et al., 2016; Gartung
et al.,, 2016; Hsieh et al., 2010; Hu et al., 2016). Additionally,
COX-2 promotes energy metabolism such as beige adipocyte
formation as well as browning of WAT (Davis et al., 2004; Fain
et al., 2001; Lundholm et al., 2004; Vegiopoulos et al., 2010).
However, whether COX-2 is critically involved in the develop-
ment of obesity remains an open question. In addition, the phys-
iological signals that control the COX-2 pathway during the
development of obesity are unclear. We found that HFD feeding
suppresses COX-2, which is accompanied by activation of
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Figure 7. mTORC1 Signaling Inhibits CRTC2 Phosphorylation at Ser'®® and Subsequently Suppresses COX-2 Transcription in Adipocytes
(A) Raptor deficiency induced COX-2 expression, which was diminished by treatment of PKA inhibitor H89 in primary preadipocytes. n = 3/group.

(B) PKA inhibition attenuated the inducing effect of rapamycin treatment on COX-2 expression.

(C) Immunofluorescence staining of CRTC2 after treatment of 100 pM cAMP homolog dibutyryl cyclic AMP, 10 nM rapamycin, or co-treatment in primary
preadipocytes.

(D) Leucine treatment stimulated the phosphorylation of CRTC2 at Ser'®® in primary preadipocytes.

(E) Rapamycin treatment inhibited CRTC2 phosphorylation at Ser'®® in primary preadipocytes.

(F) Raptor deficiency suppressed rapamycin-stimulated phosphorylation of CRTC2 at Ser'®® in primary preadipocytes.

(legend continued on next page)
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mTORC1 in WAT, while BAT is protected from these alterations
under HFD conditions (Figures 6A-6D, S4A, and S4B). In support
of this, both protein and mRNA levels of COX-2 are more en-
riched in WAT compared to BAT (Figures 3D and 3E). Notably,
mTORC1 activation and COX-2 suppression in iWAT by HFD
feeding occurs within 4 weeks, even before UCP1 suppression
(Figures 6A and 6B). In addition, inhibition of mMTORC1 in adipo-
cytes restores HFD-induced suppression of COX-2 (Figure 6G).
Despite previous findings that 25 weeks of HFD (60% kcal from
fat; Research Diet) feeding has no significant effect on COX-2
expression (Vegiopoulos et al., 2010), our data suggest that
COX-2 expression is indeed suppressed in WAT in the earlier
stage of obesity, as indicated by 4- to 16-week HFD feeding
(Figures 6C, 6D, S4C, and S4D). However, diet-induced COX-2
suppression disappears at the later stage of obesity as indicated
by 24-week HFD feeding. Given that COX-2 plays a critical role in
obesity-induced adipose inflammation and insulin resistance,
the mechanisms underlying the regulation of COX-2 expression
at the later stage of obesity may be more complicated than in the
earlier stage.

Previous studies have reported that f3-adrenergic receptors
are required for the recruitment and activation of beige adipo-
cytes in response to cold stress in WAT (Barbatelli et al., 2010;
Cannon and Nedergaard, 2004; Jimenez et al., 2003; Nahmias
et al., 1991). However, these findings were challenged by evi-
dence showing that, in the absence of B3-adrenergic receptors,
cold-induced activation of thermogenic programming in both
BAT and WAT remains fully intact (de Jong et al., 2017). These
findings also indicate the possibility of an alternative 3-adren-
ergic receptor-independent signaling pathway that may control
beige adipogenesis and activation. Adipocyte-derived PGs facil-
itates the activation of PKA-C/EBPB pathway, which induces
beige adipogenesis in adipocyte progenitor cells (Figures 5E-
5G). Therefore, treatment with the PG receptor antagonist dimin-
ishes the ability of Raptor deficiency to induce progenitor cell dif-
ferentiation into beige adipocytes (Figures 5H and 5I). The results
of this study indicate that PG receptors in progenitor cells may be
possible therapeutic targets for the treatment of obesity and its
related disorders.

Despite accumulating evidence indicating that COX-2 is
induced by lipolysis in adipocytes (Gartung et al., 2016; Klein
et al., 2007; Vegiopoulos et al., 2010), the mechanisms under-
lying modulation of COX-2 transcription in adipocytes remain
elusive. Our data suggest that overactivation of mTORC1 by
obesity suppresses COX-2 expression and PG production
through phosphorylation of CRTC2 at Ser'®® and subsequent
blocking of CREB binding to the cox-2 promoter (Figure 7).
CRTCs facilitate hepatic gluconeogenesis and lipid homeosta-
sis at the transcriptional level (Han et al., 2015; Wang et al.,

2009); however, the physiological role of CRTCs in adipose
tissue is incompletely understood. CRTC2 and CRTC3 are pre-
sent in adipose tissue as well as in adipocytes and are involved
in the regulation of energy balance and glucose uptake in adi-
pose tissue (Henriksson et al., 2015; Park et al., 2014; Song
et al., 2010). However, little is known about CRTCs modulation
and target genes in adipocytes. Our study established that
mTORCH1 inactivates the cox-2 gene by phosphorylating
CRTC2 (Figure 7). Although mTORC1 signaling has little effect
on cytoplasm-nucleus shuttling of CRTC2 in adipocytes,
mTORC1-mediated phosphorylation of CRTC2 at Ser'®® in-
hibits association between CREB and CRTC2, CREB binding
to the cox-2 gene, and the promoter activity of the cox-2
gene (Figures 71-7K). Our study establishes a pivotal role for
mTORCH1 in regulating COX-2 transcription and PG produc-
tion/secretion in adipocytes through phosphorylation of
CRTC2. Consistent with the findings of Paschos et al. (2018),
mTORC1/COX-2 pathway is not required for cold-induced
thermogenesis. Whereas adipocyte-derived PGs stimulate
accumulation of cAMP in adipocyte progenitor cells and subse-
quently promote beige adipogenesis, favoring calorie restric-
tion or weight loss induced WAT browning.

The role of adipocyte mTORC1 signaling in the regulation of
thermogenesis remains controversial. Early studies show that
inhibition of MTORC1 by S6K1 ablation as well as adipose-spe-
cific deficiency of Raptor enhances thermogenesis and energy
expenditure and protects against diet-induced obesity and
glucose intolerance (Polak et al., 2008; Um et al., 2004). In sup-
port of this, the basal expression levels of thermogenic genes
are elevated in the white fat of Raptor- or mTOR-deficient
mice (Lee et al., 2016; Meng et al., 2017; Shan et al., 2016;
Tran et al., 2016). However, other studies show that adipose
inactivation of mMTORC1 by rapamycin or Raptor deficiency
leads to lipodystrophy, fatty liver, and insulin resistance (Labbé
etal., 2016; Lee et al., 2016; Shan et al., 2016; Tran et al., 2016).
In addition, inhibition of mMTORC1 results in impaired thermo-
genesis by interacting with PKA signaling in either BAT or
both BAT and WAT (Liu et al., 2016; Tran et al., 2016). There-
fore, addressing this controversy regarding mTORC1 in adi-
pose tissue is urgently needed. Our present study shows that
adipocyte mTORC1 differentially modulates thermogenic pro-
gramming of BAT and WAT. Raptor deficiency promotes
browning of white adipose tissue by regulating beige adipocyte
differentiation in a PG-dependent manner, while suppressing
thermogenesis in BAT through impairment of brown fat devel-
opment. Interestingly, while increased thermogenesis and O,
consumption in iIWAT occurs under thermoneutrality and at
room temperature, experimental conditions in mice resemble
human conditions, an effect that disappears under cold stress

(G) The effect of rapamycin treatment on COX-2 expression in CRTC2 suppressed and scrambled primary adipocytes.

(H-K) Overexpression of CRTC2 markedly upregulated expression levels of COX-2 (H), increased the interaction between CRTC2 and CREB (l), promoted CREB
binding to the cox-2 promoter (J), and enhanced luciferase activity of the cox-2 promoter (K), while diminishing the inducing effects of rapamycin in 3T3-L1
preadipocytes. n = 3/group in (J) and (K). Meanwhile, the ability of CRTC2 to induce expression of COX-2, increase CREB binding to the cox-2 promoter, and
activate cox-2 promoter was attenuated by phosphor-mimic (S136D) but not phosphor-defective (S136A) mutation of CRTC2 in 3T3-L1 preadipocytes. The
interaction between CREB and CRTC2 was determined using immunoprecipitation. The binding of CREB to the cox-2 promoter was determined using ChIP
assay. The data in (B)—(l) are representative from at least three individual experiments. The quantified data for (D) and (E) are presented in Figures S5D and S5E.

The data in (A), (J), and (K) are presented as the mean + SEM. *p < 0.05.
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conditions. Our study demonstrates that, while mTORC1 inhibi-
tion does not intrinsically increase thermogenic capacity, it
activates PKA signaling in adipocyte progenitor cells via
CRTC2-COX-2 axis-dependent PG production. Our study un-
covers PG as a paracrine signal that promotes beige adipogen-
esis and mediates adipocyte mTORC1 inhibition-induced
browning of WAT. Given the activation of type 2 inflammation
by Raptor deficiency in iWAT (Figures S2E, 3B, and 3C), further
investigation is needed to address whether COX-2 mediates
the promoting effect of mTORC1 inhibition on immune
response in the context of thermogenic regulation. In addition,
the type and function of immune cells controlled by adipose-
specific mMTORC1/COX-2 pathway remain to be clarified.

In summary, our data show that adipocyte mTORC1 signaling
impacts adipocyte progenitor cells and controls beige adipocyte
differentiation via a PG-dependent paracrine mechanism.
Moreover, the mTORC1 pathway inhibits the production and
secretion of PG through the phosphorylation of CRTC2 and the
suppression of COX-2 in adipocytes. In addition, mTORC1-
mediated suppression of COX-2 is critically involved in the devel-
opment of obesity. Our study strongly suggests that adipocyte
mTORCH1 signaling plays a key role in regulating the develop-
ment of beige adipocytes in WAT.

EXPERIMENTAL PROCEDURES

ChIP Assay

3T3-L1 preadipocytes or CRTC2-overexpressed preadipocytes were treated
with or without 5 nM rapamycin for 10, 30, 60, or 120 min, and then fixed in
1% formaldehyde for 10 min at 37°C. Cells were washed twice with cold
PBS containing protease inhibitor cocktail, and subsequently lysed in SDS
lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCI, pH 8.1). Extracts were
sonicated until DNA fragments of 200~1,000 bp were achieved. Sonicated so-
lution was diluted in ChlIP dilution buffer (TE buffer, 1.1% Triton X-100, 167 mM
NaCl, 1.1x cocktail). The immuno-complexes were precipitated using an anti-
CREB (Millipore) antibody or IgG as the control. Precipitated complexes were
reverse cross-linked at 65°C. The amount of precipitated DNA was detected
by semiquantitative PCR using the primers 5-CAGAGAGGGGGAAAA
GTTGG-3" and 5'-GAGCAGAGTCCTGACTGACTC-3'.

Luciferase Assay

The luciferase construct of the cox-2 promoter was generated by subcloning
Xhol-Hindlll fragment (—74 to —727) of the cox-2 promoter into pGL3-basic
with the primers 5-CCCTCGAGAACCCGGAGGGTAGTTCCAT-3' and
5'-CCAAGCTTGAGCAGAGTCCTGACTGACTC-3'. 3T3-L1 preadipocytes
were grown in a 24-well plate to 70% confluency. The cox-2 promoter lucif-
erase construct was co-transfected with pSV-B-Galactosidase Control
Vector (Promega, Madison, WI, USA) in combination with pcDNA 3.1,
pcDNA/CRTC2, pcDNA/CRTC2-S136A, or pcDNA/CRTC2-S136D. 24 hr
post-transfection, cells were treated with or without 5 nM rapamycin for
4 hr and then lysed for the measurement of the luciferase with the Luciferase
Assay Kit (Promega) and B-galactosidase activities using a Turner TD20/20
luminometer.

Human Study

Patients were identified either before undergoing anterior cervical spine
surgery, before undergoing parathyroidectomy or before undergoing thy-
roidectomy, and then were recruited in the ENT clinic at time of consent
for primary surgery. This study has been reviewed and approved by Human
Research Review Committee at UNMHSC. 5-10 mg neck fat was harvested
during anterior cervical spine surgery, parathyroidectomy, or thyroidectomy.
Primary adipocytes were isolated and treated with or without 5 nM Rapamy-
cin for 20 hr.

Animals

The ob/ob mice were obtained from Jackson Laboratory (stock number
000632). The raptor floxed mice (raptorfl/fl) (Jackson Laboratory, stock num-
ber 13188) were crossed with adiponectin cre mice (Jackson Laboratory,
stock number 10803) to generate raptor fl+/—/adiponectin cre mice. The
Raptor ad+/— mice were then crossed back with raptorfl/fl mice to generate
adipose-specific raptor knockout (KO) and raptor-floxed control mice. The
knockout efficiency was confirmed in adipose tissue and other tissues by
western blot analysis using anti-raptor antibodies. Unless otherwise noted,
10-week-old male mice were used for all experiments. Animals were housed
in a specific pathogen-free barrier facility with a 12-hr light/12-hr dark cycle
with free access to food and water. For cold stress study, animals were housed
in the temperature-controlled chamber at 22°C for three days followed by
either 30°C or 6°C for another 48 hr. For the high-fat diet challenge study,
6-week-old male mice were fed with 45% of normal chow diet provided by
the animal facility at the University of New Mexico Health Sciences Center or
high-fat diet (45% kcal from fat) from Research Diets (D12451; New Bruns-
wick, NJ, USA) for 4, 16, or 24 weeks. For surgical denervation, an incision
was made at the dorsal hindlimb of the animal and lateral to the spinal column
that continued rostrally and then ventrally to the ventral hindlimb as described
in our previous study (Luo et al., 2017). Two weeks post-surgery, mice were
euthanized and inguinal fat was collected for western blot. All animal experi-
mental protocols were reviewed and approved by the Animal Care Committee
of the University of New Mexico Health Sciences Center.

RNA Isolation and Sequencing

Total RNA was isolated from single 10-um slide-mounted FFPE sections using
the RNeasy FFPE Kit from Qiagen. After isolation, total RNA was mixed with
ERCC Spike-In Mix 1 control RNA (Life Technologies) and converted to
cDNA using the SMARTer Universal Low Input RNA Kit for Sequencing (Clon-
tech), which uses random primers for the conversion. The lon Plus Fragment
Library Kit (Life Technologies) was used to add barcodes, and amplify and
size-select the final library. Four individually barcoded samples were
sequenced together on lon Proton P1v2 chips by the Analytical and Transla-
tional Genomics Shared Resource at the University of New Mexico Cancer
Center (Brayer et al., 2016). RNA-sequencing data are available for download
from the NCBI Sequence Read Archive using SRA study accession number
SRP059557.

Statistics

Statistical analysis of the data was performed using a two-tailed Student’s
t test between two groups or one-way ANOVA among three different groups.
All of the results were presented as the mean + SEM, and p value of <0.05 was
considered to be statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
and five figures and can be found with this article online at https://doi.org/
10.1016/j.celrep.2018.08.055.
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