Minireview: The Link Between Fat and Bone: Does Mass Beget Mass?

Mone Zaidi, Christoph Buettner, Li Sun, and Jameel Iqbal

Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029

Osteoporosis is less common in individuals with high fat mass. This putative osteoprotection is likely an adaptive mechanism that allows obese individuals to better carry their increased body mass. Recent studies have focused on hormones that link fat to bone. Adipokines, such as leptin, modulate bone cells through both direct and indirect actions, whereas molecules activating peroxisome proliferator-activated receptor γ drive mesenchymal stem cell differentiation towards adipocytes away from the osteoblastic lineage. There is emerging evidence that bone-derived osteocalcin regulates insulin release and insulin sensitivity and, hence, might indirectly affect fat mass. Despite these molecular connections between fat and bone, animal and human studies call into question a primary role for body fat in determining bone mass. Mice devoid of fat do not have a skeletal phenotype, and in humans, the observed correlations between bone and body mass are not just due to adipose tissue. An improved understanding of the integrative physiology at the fat-bone interface should allow us develop therapies for both osteoporosis and obesity. (*Endocrinology* 153: 2070–2075, 2012)

besity and osteoporosis are two leading causes of morbidity in the United States. However, it is widely accepted that obese individuals are less likely to develop osteoporosis (1), probably the only clinical benefit of obesity. Consistent with epidemiological observations, genetic studies have identified candidate molecules, including IGF-I, IGF-II, leptin receptor, neuropeptide Y, vitamin D receptor, estrogen receptor α , androgen receptor, TGF- β 1, IL-6, TNF- α , tumor necrosis factor receptor 2, apolipoprotein E, and peroxisome proliferator-activated receptor (PPAR), that affect both bone mass and body fat. More recently, six single nucleotide polymorphisms in a strongly associated obesity gene fat mass and obesity associated protein have been linked to bone mineral density (BMD) (2, 3). Mice lacking the fat mass and obesity associated protein gene are thus protected from obesity but have low BMD (4, 5).

One hypothesis to explain the relationship between body mass and bone density centers on increased mechanical demand in obese individuals. These individuals accrue more bone as a compensatory mechanism to better support their high body mass. Mechanical stimulation of bone causes increased osteoblast proliferation and matrix deposition (6), whereas absent or reduced gravity, as experienced in space or upon immobilization, results in acute, rapid, and severe bone loss (7, 8).

Increased mechanical demands due to increased body mass arise mostly from two tissues: fat and muscle. Attention has nonetheless been directed mostly to fat, not to muscle. However, in premenopausal women, femoral neck BMD increases linearly with muscle mass and nonlinearly with fat mass (9). Thus, women with high muscle/low fat mass have higher BMD than those with low muscle/high fat mass, suggesting that fat mass is protective only when associated with substantial muscle mass (9).

Several clinical studies, however, challenge the notion that mechanical strain, fat, or, indeed, muscle is a critical determinant of bone mass. For example, during weight

ISSN Print 0013-7227 ISSN Online 1945-7170
Printed in U.S.A.
Copyright © 2012 by The Endocrine Society
doi: 10.1210/en.2012-1022 Received January 4, 2012. Accepted March 14, 2012.
First Published Online March 30, 2012

Abbreviations: BMD, Bone mineral density; CNS, central nervous system; ECM, extracellular matrix; MSC, mesenchymal stem cell; PPAR, peroxisome proliferator-activated receptor.

For article see page 2062

loss of 14 kg, consisting of an approximately 1.8-kg loss in muscle mass and approximately 11-kg fat mass, BMD increased, rather than decreased, by 0.004 g/cm² (10). This means that the association between bone density and body mass is not always linear. It could nonetheless be explained by reduced adipose tissue dysfunction, as opposed to an effect of reducing fat mass *per se*. A similar profile has been noted in women during the menopausal transition, during which time fat mass increases, whereas bone density drops (11). All of these changes occur without a reduction in muscle mass (11), suggesting that interactions between bone, muscle, and fat are at best complex.

Exemplifying this complexity further, but in contrast to simple weight loss, patients with anorexia nervosa suffer from severe osteoporosis characterized by rapid bone loss at both trabecular and cortical sites (12–16). Women with anorexia nervosa therefore have three times the risk of fracture (15), and one in two women will have at least one fracture before age 40 (15, 17). In addition to the possible direct contribution of reduced fat and muscle mass to the bone loss, it is very likely that other factors, such as hypogonadism, inflammation, glucocorticoid excess, and malnutrition, play permissive roles (18). Leptin levels are also dramatically decreased in anorexia nervosa patients (19). Although reduced central leptin signaling would be expected to increase bone mass (see below), anorexic patients are also likely to be hypersensitive to leptin, a phenomenon that could oppose a positive bone mass effect.

The Adipokine Leptin Acts through the Central Nervous System (CNS) to Regulate Bone Mass

Although increased mechanical stimulation underlies, in part, the osteoprotective effect of high fat mass, recent studies have focused on the interplay between fat, bone, and the nervous system. Both adipose tissue metabolism, such as lipolysis, and bone remodeling are subject to endocrine and neural control.

Leptin provides an example of an adipokine that regulates both bone mass and fat mass via a CNS relay (20). Serum leptin levels directly correlate with fat mass. As a key adiposity signal, leptin gauges the availability of peripheral energy reserves and relays this information to the CNS. In turn, it suppresses appetite and controls nutrient partitioning (21–23). Humans with congenital leptin deficiency and knockout mice for either leptin (denoted *ob/ob*) or its receptor (*db/db*) develop morbid obesity (23, 24). The mice also have a high bone mass (25). Likewise, reducing serum-free leptin level by overexpressing a sol-

uble receptor increases bone mass (26). Importantly, the high bone mass phenotype of the *ob/ob* mouse is reversed by intracerebroventricular leptin infusions (25, 27, 28), a maneuver that also restores metabolic control and improves adipose tissue function, besides decreasing adiposity *per se*. Unfortunately, obese patients are not responsive to leptin injections (29). This leptin resistance is a hallmark of obesity.

Impaired CNS leptin signaling is likewise thought to underlie the high bone mass in receptor-deficient db/db mice, despite elevated circulating leptin (25). Leptin acts through the sympathetic nervous system to regulate bone formation. The ablation of adrenergic signaling thus results in high bone mass that is resistant to correction by icv leptin (30). Notably, none of the aforementioned adrenergic manipulations affect fat or muscle mass (30), suggesting that the leptin/adrenergic pathway for bone mass regulation is dissociable from the leptin pathway controlling adiposity. It is important to note, however, that leptin is also a major regulator of nutrient flux, such as free fatty acid release from adipose tissue through lipolysis. This action will alter adipose tissue function but may not necessarily reduce total fat mass (31, 32). One therefore cannot exclude that the bone actions of leptin are completely independent of its overall effect on fat metabolism.

Paradoxical to high bone phenotype of *db/db* mice, the administration of recombinant leptin to women, who have become hypogonadal due to strenuous exercise, increases bone mass by approximately 5% (33). However, because the increase in bone mass is accompanied by a restoration of estradiol levels, an indirect action of leptin via estrogen cannot be excluded. There is also evidence that leptin acts peripherally by stimulating osteoblast proliferation and inhibiting osteoclastogenesis, which promotes bone formation, although these effects of leptin on osteoprogenitor cells have not been clearly established *in vivo* (34–36). These peripheral effects of leptin may counteract the central leptin effects and may account for the beneficial effects of leptin in hypogonadal women.

Adipokines Directly Regulate Mesenchymal Stem Cell (MSC) Differentiation into Osteoblasts or Adipocytes

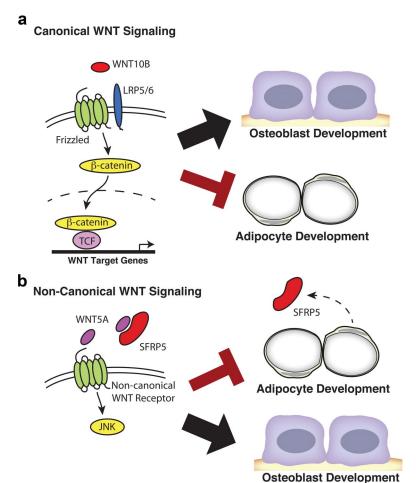
In addition to a fat-bone axis that requires the brain as a relay mechanism, fat cells can interact with osteoblasts and their precursors in a paracrine loop. When MC3T3-E1 osteoblasts are exposed to adipocyte-exposed culture media, the expression of PPARγ and runt-related transcription factor 2 is increased and decreased, respectively (37). Increased PPARγ/decreased runt-related transcription factor 2 is permissive to increased adipogenesis and reduced osteoblastogenesis. In fact, PPARγ selectively

Zaidi et al.

promotes adipogenesis from MSC, and ligands that activate PPAR γ , such as rosiglitazone, result in the accumulation of fat cells with a concomitant reduction of osteoblast numbers in bone marrow (38). Together, these findings suggest that PPAR γ activation commits MSC to become adipocytes, away from the osteoblastic lineage.

Indeed, MSC differentiation can be provoked to increase one cell lineage at the expense of another. For example, TSH enhances chondrogenesis (39) while increasing or reducing osteoblastogenesis depending on the conditions (40, 41). Furthermore, FSH receptors have been shown to exist on human MSC (42). Admittedly speculative, their stimulation might divert osteoblastogen-

esis to adipogenesis during early menopause, thus partly explaining the increased fat and reduced bone density noted during the menopausal transition (42). Likewise, glucocorticoids inhibit osteoblastogenesis and increase bone marrow fat, in part, by up-regulating cannabinoid receptor-1, which, in turn, modulates PPAR γ 2 signaling. Pharmacological inhibition of cannabinoid receptor-1 thus reverses glucocorticoid-induced alterations in osteoblast and adipocytes differentiation (43). Overall, therefore, there is a strong neuroendocrine connection in the reciprocal regulation of adipogenesis and osteoblastogenesis.


Finally, Wnt signaling in the osteoblast is critical to

bone formation. Noncanonical signaling in MSC can either promote or inhibit adipogenesis depending on the ligand (Fig. 1). Wnt5B promotes and Wnt5A inhibits adpiogenesis. As with canonical signaling, noncanonical Wnt signals, although inhibiting adipocyte differentiation, stimulate osteoblast differentiation in MSC cultures. Thus, Wnt5A, as well as its hormone inducers, such as TSH, are known to promote osteoblastogenesis (42, 44).

MSC commitment to osteoblasts or adipocytes is also determined by extracellular matrix (ECM) components. MSC grown in a soft gel matrix preferentially differentiate into adipocytes, whereas those grown in a stiff collagen gel become osteoblasts (45, 46). Integrins likely mediate the signaling effects on MSC differentiation into osteoblasts. Integrin signaling from stiffer ECM induce Rac and Rho to trigger osteogenesis while suppressing adipogenesis (46). Ligands, such as Wnt 5A, can also be activated by ECM signals. For example, the treatment of human MSC with Wnt 5A increases integrin expression (47). Furthermore, integrin expression induced by ECM is abrogated with loss of Wnt5A in human mesenchymal stem cells (47). Overall, therefore, Wnt5a appears to increase osteogenesis through a positive feedback with the ECM (47).

It Is Not Just "Mass Begets Mass"

Although abundant mechanistic data support a bone-fat axis, its true physiologic meaning comes into ques-

FIG. 1. The role of Wnt signaling in osteoblast and adipocyte differentiation. A, Canonical Wnt signaling resulting in β -catenin activation plays a critical role in mediating the fate of MSC. Wnt10B has been shown to signal through Frizzled and LRP (low-density lipoprotein receptor-related protein) 5/6 to cause β -catenin accumulation and downstream transcription of Wnt target genes. The resulting genetic program impairs adipocyte development while simultaneously augmenting osteoblast development. B, Similar to canonical Wnt signaling, noncanonical Wnt signaling also controls the fate of MSC. Wnt5A signals through JNK (Janus-N-terminal kinase) to promote osteoblastogenesis at the expense of adipocyte differentiation. In a negative feedback loop, adipocytes secrete SFRP5 that acts as a decoy for Wnt5A, thereby preventing signaling. Similar to many other adipokines, SFRP5 (secreted frizzled related protein 5) secretion can alter the extracellular signals nearby MSCs are exposed to, and reinforce differentiation into, similar cell types (e.g. produce more adipocytes). Through this mechanism, clusters of fat, or alternatively, rows of osteoblasts reinforce their own differentiation while inhibiting differentiation into other cell types.

tion on three grounds. First, obese and nonobese women lose bone at similar rates during the late perimenopause, suggesting that bone loss is independent of body mass and that it is driven by hormonal mechanisms involving estrogen, FSH, and inhibins (48, 49). Second, caloric restriction increases rather than decreases bone mass, despite the dramatic reduction in fat mass. The high bone mass is associated with increased osteoblastogenesis and reduced osteoclastogenesis, likely arising from up-regulated sirtunin-1 expression (49). Further supporting a role of sirtunin-1 is the finding that its deletion in mice leads to osteopenia and prevents bone mass accrual during caloric restriction (50).

Finally, there is controversy regarding the bone phenotype of lipoatrophic A-ZIP/F1 "fatless" mice (51). With undetectable adipokine levels, fatless mice represent a valuable model for studying the effect of fat-derived hormones on bone. Their use is, however, confounded by the profound alterations in overall metabolic control and organ cross talk (31). Although these mice were shown to have high bone mass (20), others have failed to find a bone phenotype (52). Interestingly, however, fatless mice exposed to irradiation display an increase in osteogenesis (52). This augmented osteogenesis has been attributed to enhanced osteoblastogenesis and appears to be related to decreased PPAR γ and reduced bone marrow adiposity in fatless mice (52).

Whether or not there is a high bone mass in fatless mice, the fact that these mice do not have low bone mass proves that, at least under lipodystropic conditions, fat mass and bone mass do not correlate or may indeed be regulated in a more complex manner than has been previously anticipated. Toward this notion of complexity in the relationship between fat and bone mass, numerous epidemiologic studies have demonstrated that fat mass may negatively impact bone mass and strength (53–55). For example, Hong *et al.* (53) demonstrated recently that the percent fat mass was inversely correlated with bone mass regardless of age.

Closing Thoughts

In closing, the simplistic notion that fat mass regulates bone mass has been called into question. Although fat can secrete hormones, such as leptin, that act to limit osteo-blastogenesis and stimulate adipogenesis *in vitro*, the mechanisms regulating body fat and bone mass *in vivo* are more complicated. Straightforward hypotheses on the connections between bone and fat fail to account for situations such as the elevated bone mass seen with caloric restriction in humans, or the absence of osteopenia in fatless mice. The integrative physiology at the interface of bone and fat may therefore be multipronged and, even

perhaps, disease specific. Mouse genetics has unraveled some, but not all critical regulators, whereas clinical studies tend often to counter data from mouse models.

Several key issues nonetheless arise. It would be important to differentiate the effects of fat mass vs. fat functionality on bone. For example, it would be meaningful to separate any contributions to bone mass of de novo lipogenesis vs. lipolysis, both of which produce biologically active lipokines. Second, emerging evidence that bone-derived molecules, such as osteocalcin, can regulate insulin sensitivity and insulin secretion, begs the question as to whether osteocalcin can also act directly on fat cells (56, 57). Finally, the role of muscle mass as a separate and critical modifier of bone mass is just beginning to glean (58). Particularly in the ever-increasing elderly and very elderly population, a declining muscle mass may independently affect bone mass and *vice versa*. This would beg the need for novel agents that could reverse both sarcopenia and osteoporosis in concert.

Acknowledgments

Address all correspondence and requests for reprints to: Mone Zaidi, M.D., Ph.D., Professor of Medicine and Physiology, Mount Sinai School of Medicine, Departments of Medicine and Physiology, Mount Sinai Bone Program, Endocrinology, 1055, One Gustave L. Levy Place, New York, New York 10029. Email: mone.zaidi@mountsinai.org.

Present address for J.I.: Transfusion Medicine, Cedars Sinai Medical Center, Beverly Hills, California 90048.

This work was supported by the American Federation of Aging Research (J.I.). the National Institutes of Health, notably the National Institute on Aging and National Institute of Diabetes and Digestive and Kidney Diseases (M.Z., S.L., and C.B.).

Disclosure Summary: The authors have nothing to disclose.

References

- 1. Sheu Y, Cauley JA 2011 The role of bone marrow and visceral fat on bone metabolism. Curr Osteoporos Rep 9:67–75
- Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougnères P, Kovacs P, Marre M, Balkau B, Cauchi S, Chèvre JC, Froguel P 2007 Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39: 724–726
- 3. Guo Y, Liu H, Yang TL, Li SM, Li SK, Tian Q, Liu YJ, Deng HW 2011 The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One 6:e27312
- Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, Rüther U 2009 Inactivation of the Fto gene protects from obesity. Nature 458:894–898
- 5. Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P 2010 The fat mass

- and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 5:e14005
- Iqbal J, Zaidi M 2005 Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 328:751–755
- Zaidi M 2007 Bone remodeling in health and disease. Nat Med 13:791–801
- Epstein S, Inzerillo A, Caminis J, Zaidi M 2003 Disorders associated with acute, rapid and severe bone loss. J Bone Min Res 18:1083– 1094
- Sowers MF, Kshirsagar A, Crutchfield MM, Updike S 1992 Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. Am J Epidemiol 136:257–265
- Christensen P, Bartels EM, Riecke BF, Bliddal H, Leeds AR, Astrup A, Winther K, Christensen R 21 December 2011 Improved nutritional status and bone health after diet-induced weight loss in sedentary osteoarthritis patients: a prospective cohort study. Eur J Clin Nutr 10.1038/EJCN.2011.201
- Sornay-Rendu E, Karras-Guillibert C, Munoz F, Claustrat B, Chapurlat R 21 February 2012 Age determines longitudinal changes in body composition better than menopausal and bone status: the OFELY study. J Bone Miner Res 10.1002/JBMR.1469
- Kumar KK, Tung S, Iqbal J 2010 Bone loss in anorexia nervosa: leptin, serotonin, and the sympathetic nervous system. Ann NY Acad Sci 1211:51–65
- Brooks ER, Howat PM, Cavalier DS 1999 Calcium supplementation and exercise increase appendicular bone density in anorexia: a case study. J Am Diet Assoc 99:591–593
- Brotman AW, Stern TA 1985 Osteoporosis and pathologic fractures in anorexia nervosa. Am J Psychiatry 142:495–496
- Nakahara T, Nagai N, Tanaka M, Muranaga T, Kojima S, Nozoe S, Naruo T 2006 The effects of bone therapy on tibial bone loss in young women with anorexia nervosa. Int J Eat Disord 39:20–26
- Salisbury JJ, Mitchell JE 1991 Bone mineral density and anorexia nervosa in women. Am J Psychiatry 148:768–774
- Milos G, Spindler A, Rüegsegger P, Seifert B, Mühlebach S, Uebelhart D, Häuselmann HJ 2005 Cortical and trabecular bone density and structure in anorexia nervosa. Osteoporos Int 16:783–790
- Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R 1990 Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics 86:440–447
- Haluzíková D, Dostálová I, Kaválková P, Roubícek T, Mráz M, Papezová H, Haluzík M 2009 Serum concentrations of adipocyte fatty acid binding protein in patients with anorexia nervosa. Physiol Res 58:577–581
- Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G 2000 Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207
- Havel PJ 2000 Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc Nutr Soc 59:359–371
- Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL 1996 Serum immunoreactive-leptin concentrations in normalweight and obese humans. N Engl J Med 334:292–295
- 23. Oswal A, Yeo G 2010 Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity 18:221–229
- 24. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S 1997 Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908
- 25. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV 1996

- Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161
- Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G 2004 Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101:3258–3263
- 27. Considine RV, Considine EL, Williams CJ, Nyce MR, Magosin SA, Bauer TL, Rosato EL, Colberg J, Caro JF 1995 Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity. J Clin Invest 95:2986–2988
- Hassink SG, Sheslow DV, de Lancey E, Opentanova I, Considine RV, Caro JF 1996 Serum leptin in children with obesity: relationship to gender and development. Pediatrics 98:201–203
- 29. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M 1999 Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575
- Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G 2002 Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317
- 31. Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, Su K, Cheng B, Li X, Harvey-White J, Schwartz GJ, Kunos G, Rossetti L, Buettner C 2008 Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 14:667–675
- 32. Scherer T, Buettner C 2011 Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord 12:235–243
- 33. Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, Arampatzi KM, Gao C, Koniaris A, Mantzoros CS 2011 Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism 60:1211–1221
- 34. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR 2002 Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415
- 35. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL 1999 Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638
- Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR, Cornish J 2011 Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 26: 1698–1709
- 37. Liu LF, Shen WJ, Zhang ZH, Wang LJ, Kraemer FB 2010 Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J Cell Physiol 225:837–845
- 38. Wang D, Haile A, Jones LC 2011 Rosiglitazone-induced adipogenesis in a bone marrow mesenchymal stem cell line—biomed 2011. Biomed Sci Instrum 47:213–221
- 39. Bagriacik EU, Yaman M, Haznedar R, Sucak G, Delibasi T 2011 TSH-induced gene expression involves regulation of self-renewal and differentiation-related genes in human bone marrow-derived mesenchymal stem cells. J Endocrinol 212:169–178
- Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M 2003 TSH is a negative regulator of skeletal remodeling. Cell 115:151–162
- 41. Baliram R, Latif R, Berkowitz J, Frid S, Colaianni G, Sun L, Zaidi M, Davies TF 2011 Thyroid-stimulating hormone induces a Wntdependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc Natl Acad Sci USA 108:16277–16282
- Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone A, Sairam MR, Kumar TR, Bo W, Braun J, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M 2006 FSH directly regulates bone mass. Cell 125:247–260
- 43. Ko JY, Wu RW, Kuo SJ, Chen MW, Yeh DW, Ke HC, Wu SL, Wang

- FS 29 November 2011 Cannabinoid receptor 1 mediates glucocorticoid-induced bone loss by perturbing bone acquisition and marrow adipogenesis. Arthritis Rheum 10.1002/ART.33457
- 44. Liu Y, Rubin B, Bodine PV, Billiard J 2008 Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem 105:497–502
- Cristancho AG, Lazar MA 2011 Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734
- Rowlands AS, George PA, Cooper-White JJ 2008 Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295: C1037–C1044
- 47. Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, Boyan BD, Schwartz Z 2011 Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials 32:6399– 6411
- 48. **Iqbal J, Sun L, Zaidi M** 2010 Commentary-FSH and bone 2010: evolving evidence. Eur J Endocrinol 163:173–176
- Sowers MR, Zheng H, Jannausch ML, McConnell D, Nan B, Harlow S, Randolph Jr JF 2010 Amount of bone loss in relation to time around the final menstural period and follicle-stimulating hormone staging of the transmenopause. J Clin Endocrinol Metabol 95:2155–2162
- Zainabadi K 2009 SirT1 regulates bone mass in vivo through regulation of osteoblast andosteoclast differentiation. In: Biology. Boston: MIT

- 51. Hursting SD, Nunez NP, Varticovski L, Vinson C 2007 The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res 67: 2391–2393
- 52. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ 2009 Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263
- 53. Hong X, Arguelles LM, Liu X, Tsai HJ, Hsu YH, Wang B, Zhang S, Li Z, Tang G, Liu X, Yang J, Xu X, Langman C, Wang X 2010 Percent fat mass is inversely associated with bone mass and hip geometry in rural Chinese adolescents. J Bone Miner Res 25:1544–1554
- 54. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X 2006 Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154
- Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW 2007 Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646
- Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G 2007 Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469
- 57. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G 2010 Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308
- Matthews GD, Huang CL, Sun L, Zaidi M 2011 Translational musculoskeletal science: sarcopenia the next clinical target after osteoporosis. Ann NY Acad Sci 1237:95–105

The Society bestows more than 400 awards and grants annually to researchers, clinicians, and trainees.