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Cyclooxygenase-2 Controls Energy
Homeostasis in Mice by de Novo
Recruitment of Brown Adipocytes
Alexandros Vegiopoulos,1* Karin Müller-Decker,2* Daniela Strzoda,1 Iris Schmitt,1
Evgeny Chichelnitskiy,1 Anke Ostertag,1 Mauricio Berriel Diaz,1 Jan Rozman,3
Martin Hrabe de Angelis,3 Rolf M. Nüsing,4 Carola W. Meyer,5 Walter Wahli,6
Martin Klingenspor,7 Stephan Herzig1†

Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue
(WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive
thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)–2, a rate-limiting
enzyme in prostaglandin (PG) synthesis, is a downstream effector of b-adrenergic signaling in
WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of
defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2
in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and
protected mice against high-fat diet–induced obesity. Thus, COX-2 appears integral to de novo
BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.

Obesity arises from chronic energy surplus
and excess lipid storage in white adipose
tissue (WAT). In contrast to WAT, brown

adipose tissue (BAT) burns lipid to generate heat.
Until recently, BAT was thought to function pri-
marily in rodents and in newborn babies as a
mechanism that facilitates adaptation to cold.
However, recent studies have revealed that adult
humans also have functional BAT (1–4), a find-
ing that has fueled speculation that pharmacologic
enhancement of BAT development and activity
might be a useful strategy to counteract obesity.

In this study, we have explored whether
cyclooxygenase-2 (COX-2), a rate-limiting en-
zyme in prostaglandin (PG) synthesis, contributes
to BAT development in mice. Previous work by
others had implicated COX-2 in the control of
whole-body energy homeostasis and adipose tis-
sue metabolism; for example, selective inhibition

of COX-2 was shown to attenuate weight loss and
energy expenditure in cancer patients and tumor-
bearing mice (5, 6), and genetically manipulated
mice that express only one wild-type allele of
COX-2were shown to exhibit fat accumulation (7).

These findings prompted us to screen for
differential COX-2 expression in WAT obtained
from various mouse models of altered energy ho-
meostasis (8). No clear differences in COX-2
mRNA expression were detected in mice with
genetic or diet-induced obesity or in cachectic
mice. However, an increase by a factor of two in
COX-2 mRNAwas observed in intra-abdominal
WAT after 4 weeks of cold exposure (Fig. 1A).
This was accompanied by up-regulation of un-
coupling protein 1 (UCP1), the major determinant
of mitochondrial thermogenesis (Fig. 1B). In the
cold, thermogenic inducible BAT (indBAT) is
readily engaged in WAT depots upon sympathetic

activation of b-adrenergic receptor signaling by nor-
epinephrine (NE) (9, 10). To recapitulate cold ex-
posure, we treated mice with the b3-adrenoreceptor
agonist CL316243 (CL) (10). Acute stimulation
with CL resulted in amarked induction of COX-2
but not COX-1 mRNA in intra-abdominal WAT
(Fig. 1C) and enhanced the release of the major
WAT-derived PG (11), PGE2 and PGI2, from
WAT explants (fig. S2). Notably, COX-2 mRNA
levels were also induced upon ex vivo stimulation
of mature adipocytes with NE, but only mar-
ginally in the stromal-vascular cell fraction (SVF)
(fig. S3).

We next investigated the effect of prolonged
b3-adrenergic stimulation in wild-type and COX-
2–deficient mice (12) and in wild-type mice fed a
control diet or a diet containing celecoxib (cx), a
selective COX-2 inhibitor (13). CL treatment re-
sulted in induction of COX-2 protein expression
along with a pronounced BAT-like phenotype in
WATof wild-type mice fed control diet, as judged
by the predominance of smaller cells with rich
cytoplasmic staining, multilocular lipid droplets,
and UCP1 expression (Fig. 1, D to F, and fig. S4).
BATcharacteristics were substantially diminished
in WATof CL-treated animals on a celecoxib diet
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Heidelberg, 69120 Heidelberg, Germany. 2Core Facility Tumor
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as well as in COX-2–/– mice (Fig. 1, E and F, and
fig. S5). Also, in comparison with vehicle control,
CL caused a strong reduction of fat accumulation
under control diet, whereas the effect of CL under
celecoxib diet and COX-2 deficiency was atten-
uated (fig. S6). These results suggested that de
novo indBAT recruitment and the systemic ther-
mogenic response to b-adrenergic stimulation de-
pend on COX-2 activity. Consistent with this
interpretation, CL-mediated induction of genes

that are critical for cellular thermogenesis (UCP1,
CIDEA, CPT1B, and DIO2) (9), for brown adi-
pocyte differentiation (CEBPB), or for the genetic
activation of thermogenesis (PGC1A and PPARA)
(9, 14) was markedly blunted upon pharmacologic
or genetic COX-2 inhibition (Fig. 1G and figs. S7
and S8). In contrast, CL-stimulated thermogenic
mRNA expression in interscapular BAT, a consti-
tutive BAT (conBAT) depot in mice (9), was not
influenced by celecoxib (fig. S9).

To explore whether increased COX-2 activity
is also sufficient for indBAT recruitment under
conditions of steady-state b-adrenergic stimula-
tion, we studied transgenic mice overexpressing
the COX-2 gene under the control of the promoter
for the keratin 5 gene (K5COX2) (15). In the ab-
sence of systemic inflammation (fig. S10), the
K5COX2 model mimicked the CL-induced ele-
vation ofWATPG levels (fig. S11) and of COX-2
expression inmultilocular adipocytes within intra-
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Fig. 1. COX-2 is required for recruitment of BAT in WAT depots downstream
of b-adrenergic signaling. (A and B) COX-2 (A) and UCP1 (B) mRNA levels in
intra-abdominal WAT of obese ob/ob and wild-type (wt) mice (n ≥ 8), mice
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matization to 5°C or 23°C (RT) (n ≥ 3; COX-2 P = 0.03, UCP1 P = 0.08). (C)
COX mRNA levels in intra-abdominal WAT of mice after a single
intraperitoneal injection of CL316243 (CL, 1 mg per kg of body weight)
or saline (n = 5) 3 hours after injection. (D to F) Representative pictures of
COX-2 immunohistochemical (D), hematoxylin/eosin (E), and UCP1
immunohistochemical (F) staining of sections of paraffin-embedded intra-
abdominal WAT from mice on control or celecoxib (1500 parts per million)–
containing diet (cx) injected daily with CL or saline for 10 days (n = 5). (G)
Quantitative reverse transcription polymerase chain reaction (RT-PCR)
mRNA analysis of intra-abdominal WAT from same mice as in (D) to (F) [n ≥ 4; analysis of variance (ANOVA) post tests, *P < 0.05]. Means T SEM.
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abdominal WAT (fig. S12), which could be at-
tributed to a positive feedback loop of PG on
local COX-2 expression (figs. S1 and S11 to
S14). Clusters of BAT-like cells were detectable
within WAT in intra-abdominal fat sections from
K5COX2 mice (Fig. 2A). Correlating with loss
of COX-2 expression in WAT and normalized
plasma PG levels (figs. S12 and S13), BAT-like

cells were absent in intra-abominal fat upon “ther-
apeutic” celecoxib exposure (Fig. 2A). Consistent-
ly, mRNA expression analysis showed a marked
induction of the thermogenic gene expression
program in K5COX2 mice (Fig. 2B and fig.
S15), which suggests that local COX-2 overex-
pression in WAT is sufficient for ectopic indBAT
development.

K5COX2 mice displayed a 20% reduction in
body weight, correlating with a severe reduction
in body fat content but not muscle mass or bone
length (Fig. 2, C and D, and fig. S16), which was
reversed in animals on a celecoxib diet (fig. S17).
The reduced adiposity of K5COX2 mice could
not be explained by decreased food intake (Fig.
2E), increased activity of thermogenic and/or fu-
tile cycles in skeletal muscle (fig. S18), enhanced
conBATactivity (fig. S19), or compromised skin
insulation (figs. S18 to S22), but was associated
with increased energy expenditure. Oxygen con-
sumption was increased in K5COX2 mice com-
pared with controls (Fig. 2F), which, along with
an increase in body temperature (fig. S22), re-
flected a significant elevation of the resting meta-
bolic rate (fig. S22). Consistent with increased
substrate use, plasma free fatty acid and glycerol
levels were lower in K5COX2mice as compared
with controls (fig. S23). Taken together, these
results indicate that COX-2 has a critical role in
indBAT development and function in WAT de-
pots and that the COX-2-PG pathway contributes
to adaptive thermogenesis and energy homeostasis.

Because the cellular origin of indBAT is cur-
rently a matter of dispute (9, 16), we sought to
determine the cell type responding to PG down-
stream of COX-2. Whereas NE treatment re-
sulted in moderate but significant increases in
UCP1, PGC1A, and PPARAmRNA expression,
neither PGE2 nor carbaprostacyclin (cPGI2), a
stable analog of PGI2, induced these genes in ma-
ture adipocytes (fig. S24). In contrast to conBAT
cells, induced brown adipocytes in WAT depots
do not originate from common BAT/myogenic
progenitors during cold exposure (16, 17). Indeed,
markers of conBATprogenitors,MYF5 and LHX8,
were not enriched in indBAT of CL-treated or
K5COX2 mice (fig. S25), substantiating the
hypothesis that indBAT cells derive from unique
mesenchymal progenitors residing in the SVF of
WAT depots (9). As a model for multipotent mes-
enchymal progenitors, we first studied C3H10T1/2
cells (16, 18) and treated them with PG or NE
during adipogenic differentiation. Differentiation
of these progenitors in the presence of cPGI2
generated lipid-containing adipocytes with enhanced
bona fide brown adipocyte capacities, as shown
by a substantially increased response of thermo-
genic gene expression to postdifferentiation acute
NE stimulation (Fig. 3A and fig. S26) (19). Ad-
ditionally, acute treatment of primary SVF cells
from WAT with PGE2 or cPGI2 led to a signif-
icant increase in UCP1 and PGC1A mRNA ex-
pression to an extent comparable to or greater
than that induced by NE (fig. S27), supporting
the notion that (progenitor) cells within the SVF
are PG-responsive and in principle capable of up-
regulating BAT-specific genes.

We next isolated primary Lin–CD29+CD34+

Sca1+ progenitor cells from WAT-derived SVF.
These cells have the potential to differentiate
along several mesenchymal lineages, including
the lineage leading to white adipocytes (20) (fig.
S28). Treatment with cPGI2 or coculture with
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CL-treated WATexplants induced the expression
of UCP1 mRNA in these undifferentiated pro-
genitor cells (figs. S29 and S30). Exposure of the
Lin–CD29+CD34+Sca1+ cells to cPGI2 during
adipogenic differentiation potently elevated BAT
marker gene expression and enhanced the post-
differentiation responsiveness to NE (Fig. 3B and
fig. S31). Similar results were also obtained with
primary mesenchymal progenitors obtained from
humanWAT (Fig. 3C). The cPGI2 effects in Lin

–

CD29+CD34+Sca1+ progenitors were blocked by
loss-of-function of cellular PGI2 receptors, Ptgir
(7-transmembrane receptor) (21) or nuclear re-
ceptor PPARg (22) (Fig. 3, B and D, and figs. S31
and S32) but were unaffected by PPARa/PPARb/d
double knockout (fig. S33). Consistently, CL-
induced indBATrecruitmentwas impaired in Ptgir–/–

mice (figs. S34 to S36). Likewise, CL-induced
indBAT recruitment was partially inhibited in
PPARg+/– animals (figs. S37 and S38) (23) but not
in PPARa–/– or b/d–/– mice (figs. S39 and S40),
although the effect of PPARg heterozygosity on
UCP1 expression was compensated in the context
of the intact tissue in vivo. These results demon-
strate that COX-2 triggers recruitment of indBAT
in WAT through a conserved PG-mediated differ-
entiation shift of WAT mesenchymal progenitors
toward the brown adipocyte phenotype using both
membrane (Ptgir) and nuclear (PPARg) receptor
pathways.

Lastly, the critical role of COX-2 in the de
novo recruitment of indBAT prompted us to as-
sess the potential of this pathway to counteract
adiposity and its pathophysiological consequences.
Wild-type mice on a high-fat diet (HFD) showed
a marked body weight gain throughout a 16-week
feeding period (Fig. 4A). In contrast, weight gain
was not significant in K5COX2 mice after 16
weeks on HFD; these mice reached body weight
levels of wild-typemice on control diet (Fig. 4A).

Moreover, K5COX2mice were protected against
HFD-induced fasting hyperglycemia (fig. S41),
hyperinsulinemia (fig. S41), and glucose intol-
erance (Fig. 4B), suggesting that the stimulation
of indBAT recruitment and energy expenditure
through the COX-2-PG pathway confers protection
against several adverse metabolic consequences
of diet-induced obesity.

In conclusion, our data are consistent with a
model in which NE released from sympathetic
nerves induces COX-2 activity in WAT. We pro-
pose that downstream PG(I2)/Ptgir/PPARg signal-
ing then shift(s) the differentiation ofmesenchymal
progenitors toward a brown phenotype with in-
creased sensitivity to NE (fig. S1). This feed-
forward mechanism results in the recruitment of
indBAT in WAT depots, contributing to thermo-
genesis and systemic energy expenditure. Cur-
rently, there are no drugs available that induce
BAT. b-adrenergic agonists that increase thermo-
genesis have been tested in humans as antiobesity
drugs, but with limited success (24, 25). Manipu-
lation of COX-2/PG signaling in defined indBAT
progenitors represents an alternative strategy for
enhancing BAT activity that could help protect
against energy surplus and body weight gain.
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Genome-Wide Kinetics of Nucleosome
Turnover Determined by Metabolic
Labeling of Histones
Roger B. Deal,1 Jorja G. Henikoff,1 Steven Henikoff1,2*

Nucleosome disruption and replacement are crucial activities that maintain epigenomes, but these highly
dynamic processes have been difficult to study. Here, we describe a direct method for measuring
nucleosome turnover dynamics genome-wide. We found that nucleosome turnover is most rapid over active
gene bodies, epigenetic regulatory elements, and replication origins in Drosophila cells. Nucleosomes turn
over faster at sites for trithorax-group than polycomb-group protein binding, suggesting that nucleosome
turnover differences underlie their opposing activities and challenging models for epigenetic inheritance
that rely on stability of histone marks. Our results establish a general strategy for studying nucleosome
dynamics and uncover nucleosome turnover differences across the genome that are likely to have functional
importance for epigenome maintenance, gene regulation, and control of DNA replication.

Nucleosome disassembly and reassembly,
or turnover, is necessary for epigenome
maintenance, but themechanisms that are

responsible remain unclear (1). One approach to
this problem has been to map enrichment of the
universal histone replacement variant, H3.3 (2–6),

which requires complete unwrapping of DNA
from around the histone core for its replication-
independent deposition to occur. Genome-wide
profiling of steady-state amounts of H3.3 from
Drosophila melanogaster S2 cells indicated that
nucleosome replacement occurs most prominently
across transcribed regions of active genes and at
promoters and binding sites of trithorax group
(trxG) and polycomb group (PcG) proteins (2, 3).
Similar results were obtained for HeLa cells (7)
and Caenorhabditis elegans embryos (8). A more
direct approach, which can measure dynamics but
is limited to yeast, is to express constitutive and in-
ducible histone transgenes and to measure the rel-
ative incorporation of their encoded tagged histones
(9–11). These studies indicated that turnover rates
were high at promoters and chromatin boundary
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