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Abstract

AMP-activated protein kinase (AMPK) is a major regulator of energy metabolism at both the cell and at
the whole body level. Numerous genetic and obesity models as well as human studies have suggested a
role for AMPK in the physiological regulation of fatty acid and glucose metabolism, and in the regulation
of appetite. Changes in AMPK activity have been reported in obesity, type 2 diabetes, the metabolic syn-
drome and cardiovascular disease, which jointly represent a major health and economical problem
worldwide. Whether AMPK changes are one of the causes or the consequence of these pathological
conditions remains a matter of debate, but AMPK clearly represents a major potential pharmacological
target in the treatment of these conditions. Copyright © 2008 S. Karger AG, Basel

Obesity is a major health and economic problem in both Western and developing
societies. Its continuing rise in prevalence, 20% in England and 30% in USA [1, 2]
seems to be unstoppable despite multiple efforts to attempt to halt this trend. Obesity
is characterised by multiple metabolic changes such as insulin resistance, dyslipi-
daemia and hypertension. The diseases arising as a consequence of obesity such as
type 2 diabetes (T2D), cardiovascular disease and certain cancers, are increasingly
important causes of morbidity and mortality. In the last decades, a huge amount of
research has been dedicated to the study of the complex pathophysiology of obesity
and to the research for new medical therapies.

AMP-activated protein kinase (AMPK) has emerged in the last years as a major regu-
lator of cell and whole body metabolism. Numerous papers have reported evidence for
its role in the regulation of appetite, of body weight and of metabolism [3-5]. Therefore,
it is natural to consider AMPK as a major player in the development of obesity. The
AMPK complex is an evolutionally conserved serine/threonine heterotrimer kinase
complex consisting of a-, B- and y-subunits [for detailed reviews see 5, 6]. AMPK is
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activated by cellular stress, which depletes cellular ATP leading to a concomitant rise in
AMP. AMP activates AMPK by three distinct mechanisms: (a) allosteric activation, (b)
stimulation of phosphorylation of the a-subunit on Thr172 by upstream kinase(s)
[LKB1 and calmodulin kinase kinase-a or - and recently a new possible AMPK kinase
candidate, the transforming growth factor-f-activated kinase (TAK1), which phospho-
rylates AMPK on Thr-172 in HeLa cells [7], has been reported], and (c) inhibition of
dephosphorylation by protein phosphatases [5, 8-10]. Cellular stresses that cause a rise
in the AMP/ATP ratio include metabolic poisons (arsenite, oligomycin), oxidative
stresses, hypoxia, low glucose, muscle contraction and nutrient deprivation. Osmotic
stress also activates AMPK even without a change in the AMP/ATP ratio. Once acti-
vated, AMPK switches off anabolic pathways such as gluconeogenesis, glycogen, fatty
acid, triglyceride, cholesterol and protein synthesis (mTOR-p70SK-E2 pathway), and
switches on catabolic pathways such as glycolysis, glucose uptake, and fatty acid oxida-
tion. It also leads to mitochondrial biogenesis, which improves the ATP synthesis capac-
ity of the cell [11]. Metabolic changes induced by AMPK are both acute changes due to
phosphorylation of key enzymes and longer-term effects on the expression of genes
involved in metabolic regulation. AMPK, through several mediators, plays a role in vari-
ous physiological and pathological processes in different tissues (fig. 1). Therefore, it was
logical to hypothesise that abnormal AMPK activity would be present in conditions of
deregulated energy balance, such as obesity and T2D.

Role of AMPK in Normal Physiology

Role of AMPK in Skeletal Muscle Metabolism

Skeletal muscle is the major site of glucose uptake [12], a process that is mainly stim-
ulated by insulin but also by other alternative pathways. Exercise stimulates glucose
uptake in the skeletal muscle independently of the insulin pathway and AMPK
appears to be the mediator of this effect, primarily in the glycolytic white muscle.
These conclusions derived from studies in which in vivo AMP-mimetic 5-aminoimi-
dazole-4-carboxamide ribonucleoside (AICAR) treatment stimulated glucose uptake
[13]. The effect was not inhibited by the inhibition of the insulin-dependent PI3K
pathway and was additive to insulin-stimulated glucose uptake [14]. AICAR also
stimulates glucose transporter GLUT4 expression [15, 16] and its translocation to the
cell membrane in rat skeletal muscles [17]. Chronic AMPK activation also increases
the expression of hexokinase II, the first enzyme of the glycolysis pathway [18] and
inactivates glycogen synthase [19]. The effect of AMPK is fibre dependent and is dif-
ferent in resistance (weight lifting) or endurance (distance running) exercise. AMPK
stimulates glucose uptake and GLUT4 expression/transport in fast-twitch (glycolytic,
white) muscle but not in slow-twitch (oxidative, red) muscle [20]. AMPK in muscle is
activated during exercise, probably as a result of the exercise-induced IL-6 release, a
cytokine which activates AMPK in isolated rat muscles [21]. Moreover, it seems that
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Fig. 1. Metabolic targets of AMPK in muscle, liver and adipose tissues. AMPK regulates the expres-
sion and phosphorylation of enzymes and genes involved in glucose and lipid metabolism.
GLUT4 = Glucose transporter 4; MEF-2 = myocyte enhancer factor-2; GEF = GLUT4 enhancer factor;
AS-160 = Akt-substrate-of-160 kDa; ACC = acetyl-coenzyme A carboxylase; PEPCK = phospho-
enolpyruvate carboxykinase; G6Pase = glucose-6-phosphatase; GPAT = glycerol-3-phosphate acyl-
transferase; L-PK = L-pyruvate kinase; ChREBP = carbohydrate response element-binding protein;
TORC2 = transducer of regulated CREB activity 2; HNFa = hepatic nuclear factor «; FAS = fatty
acid synthase; SREBP-1c = sterol regulatory element binding protein-1; HMGR = 3-hydroxy-3-
methylglutaryl-coenzyme A reductase; HSL = hormone-sensitive lipase.

only endurance exercise and not resistance exercise can induce AMPK activation
[20, 22]. AMPK activation in endurance exercise could also explain the lack of mus-
cle hypertrophy in distance running in contrast to weight lifting. This is possibly
due to the effect of AMPK on the mTOR pathway [20]. The mTOR pathway stimu-
lates protein synthesis and hence cell growth and hypertrophy in response to growth
factors and amino acids. Therefore, AMPK inhibition of this pathway would result in
inhibition of protein synthesis and lack of muscle hypertrophy. AMPK also stimulates
fatty acid oxidation in muscle. This results in lower lipid deposition and increases the
ability of the muscle to meet energy needs by increasing glucose uptake and fatty acid
oxidation as well. Studies with transgenic animals (AMPK a1 and a2 knockout mice,
muscle-specific over-expression of dominant negative AMPK a2, AMPK v3 knock-
out, muscle-specific over-expression of AMPK 3 and muscle-specific over-expression
of AMPK +v3 R225Q overactive mutant and skeletal muscle-specific LKB1 knockout
[for detailed descriptions, see 20, 23]), have provided further evidence for AMPK
being the main mediator, although not the only one, of the adaptations (i.e. increased

200 Kola - Grossman - Korbonits

ity

5 - 4/30/2015 2:10:23 PM




glucose uptake, fatty acid oxidation, inhibition of glycogen synthesis) of skeletal mus-
cle in response to exercise.

Role of AMPK in Liver Metabolism

The liver is the major site for storage and release of carbohydrates and for fatty acid
synthesis. It responds to fasting with increased glucose output and increased fatty
acid oxidation, while in post-prandial conditions liver glucose uptake increases with
consequent glycogen and triglyceride synthesis [24]. AMPK regulates liver lipid and
glucose homeostasis via phosphorylation of multiple enzymes (e.g. ACC1 - { lipid
synthesis, ACC2 - T lipid oxidation, 3-hydroxy-3-methylglutaryl-coenzyme A reduc-
tase — ¥ cholesterol synthesis, glycerol-3-phosphate acyltransferase — ¥ glycerolipid
synthesis), and influences the expression of genes involved in gluconeogenic, gly-
colytic and lipogenic processes and their upstream regulators [for a comprehensive
review on the topic, see 25]. Therefore, overall AMPK activation in the liver results in
inhibition of gluconeogenesis, fatty acid, triglyceride and cholesterol synthesis, and
stimulation of fatty acid oxidation. Changes in hepatic metabolism are certainly pre-
sent in obesity and T2D. Elevated glucose production by the liver is the major cause
of fasting hyperglycaemia, and it is possible that AMPK activation by decreasing glu-
coneogenesis and cholesterol synthesis could be beneficial in these patients. Nevertheless,
one needs to be cautious as AMPK activation, by increasing fatty acid oxidation and
ketogenesis, might lead to ketoacidosis, and by inhibiting protein synthesis might
lead to a negative nitrogen balance together with enhanced urea synthesis [25].

Role of AMPK in Adipose Tissue Metabolism
Adipose tissue has been considered for decades simply as an energy storage organ, while
in the last years it has emerged as an active endocrine organ, which by secreting several
proteins, known as adipokines, contributes to the regulation of appetite and metabolism.
AMPK al subunit is the prevalent AMPK subunit expressed in the adipose tissue [26
and our own unpublished data]. AMPK regulates lipogenesis and lipolysis in adipose tis-
sue. Activation of AMPK in rodent adipocytes leads to a decreased fatty acid uptake,
decreased triglyceride synthesis and increased fatty acid oxidation via inhibition of ACC1
and ACC2 and, as in the liver, inhibition of the expression of lipogenic genes [27, 28].
During fasting, lipolysis is activated in adipose tissue in order to provide fatty acids
and glycerol as fuels for peripheral tissues, but reports on the effect of AMPK activation
on lipolysis are contradictory. There is evidence that AMPK activation, either by AICAR
or by over-expression of a constitutively active AMPK isoform or by biguanide treat-
ment, has an inhibitory effect on lipolysis [26, 29]. In conditions where lipolysis is acti-
vated, such as fasting and exercise, AMPK is also activated but as a feedback mechanism
this activation leads to inhibition of lipolysis, which is an energy-consuming process for
the adipocytes [27]. Furthermore, in the AMPK «al knockout mice, the size of the
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adipocytes is reduced and basal and isoprotenerol-induced lipolysis is higher than that
of control adipocytes [26]. On the contrary, the study of Yin et al. [30] suggested a lipoly-
tic action for AMPK and the study by Koh et al. [31] suggested that the adrenaline-
induced lipolysis is due to AMPK activation. There are also contradictory findings
related to the effect of AMPK on glucose transport in adipose tissue [32-34].

In conclusion, AMPK activation in adipose tissue, under conditions such as exer-
cise, fasting or after stimulation with leptin, adiponectin or biguanides, decreases
lipogenesis, triglyceride synthesis and lipolysis and increases fatty acid oxidation,
contributing therefore to improved insulin sensitivity.

Role of AMPK in Endocrine Pancreas

The effects of AMPK activation in 3-cells are complex: further data for the role of AMPK
in endocrine pancreas are available in the chapter by Rutter and Parton [this vol., pp.
118-134]. AMPK might be involved in the expression of insulin receptor family mem-
bers, such as the IGF-I receptor, insulin receptor and insulin receptor-related receptor,
which are mandatory for several steps in insulin secretion [35], while AICAR increases
the phosphorylation of insulin receptor substrate-1 (IRS-1) on Ser789 leading to
increased IRS-1 activity [35]. On the other hand, AICAR and metformin inhibit rapid
insulin release [35] and the activation of AMPK also enhances 3-cell apoptosis; it remains
to be determined if this is the cause or the consequence of the altered glucose metabolism
[36-38]. AMPK appears to be a key regulator of hepatocyte nuclear factor-4c, which is
linked to type 1 maturity-onset diabetes of the young [for further details, see 36]. The
overall effect of AMPK on glucose homeostasis [6, 36] is determined by the joint effect on
insulin secretion in addition to the prominent effects of AMPK activation on glucose
transport, gluconeogenesis and glycogenolysis, in muscle and liver.

Role of AMPK in Hypothalamus

The role of AMPK in the regulation of body weight and energy homeostasis is not lim-
ited to its actions in the peripheral tissues. AMPK is a central regulator of food intake.
AMPK mediates the effects of multiple orexigenic and anorexigenic signals in the hypo-
thalamus [35]. Fasting increases and refeeding decreases the AMPK activity in the
hypothalamus [39]. The downstream pathways of AMPK in the hypothalamus could
involve the ACC-malonyl-CoA-CPT1 pathway [3] and the mTOR pathway [40, 41] (fig.
2). Leptin and changes in glucose concentration affect the activity of glucose-inhibited
cells (40% of which are NPY-expressing neurons) in the hypothalamus via AMPK [42].
Actually, AMPK activity in the hypothalamus is probably responsible for some of the
peripheral effects of leptin, of hypoglycaemia and of the FAS inhibitor C75 [3, 35],
emphasising the complexity of the regulation of whole body metabolism and the role of
AMPK, being not only a peripheral or a central mediator but also a key enzyme in coor-
dinating the interaction between peripheral and central energy regulation.
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Fig. 2. Regulation of hypothalamic AMPK and possible downstream pathways. Black lines show path-
ways established in the hypothalamus, grey lines show pathways that have been described in rat mus-
cle, rat liver, myotubes, hepatocytes, fibroblasts and lung carcinoma cells [97, 98] but not directly in the
hypothalamus.

AMPK as a Mediator of Action of Metabolically Active Hormones

AMPK mediates the effects of many hormones/peptides/substances/drugs in numer-
ous physiological and pathological processes. Insulin, leptin, adiponectin, cannabi-
noids and ghrelin influence peripheral metabolism at least partially via activation or
inhibition of AMPK activity in the skeletal muscle, liver, adipose tissue and the hypo-
thalamus (table 1) [35]. AMPK has been found to be the mediator of many hormones
and its role in the interplay between these compounds and their metabolic effects is
being actively investigated [for a detailed review on the topic, see 35].

AMPK in Animal Models of Obesity
Animal models of obesity and diabetes have provided evidence for implication of

AMPK in the pathogenesis of these conditions and also provided evidence for a pos-
sible role of AMPK modulators in their treatment (table 2).
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Table 1. Effect of hormones and drugs on AMPK activity in different tissues [modified and updated
from 35]

Hormone/ Hypothalamus Skeletal Liver Adipose Pancreas: Cardiac
substance Muscle tissue B-cells muscle
Highglucose U[39,60,611  U[36] Ure2] U[36, 63, 64]

Insulin U[39] =[36] =[50] =[36] J[30] =I36] Ure5]
Leptin U39,42,66]  M67,68] 146, 50,69,70] MN[71] =[63] =[72,73]
Ghrelin 166, 74] =[74] U[74,75] U741 N74]
Adiponectin N76-78] M50, 76, 771 M33] livg) 180, 81]
Resistin Urs2] U83, 84]

Glucagon N8s]

Cannabinoids  11[74] =[74] U741 U741 N74]
Metformin Uie0] i8e] 62, 86] N871 37, 63] s8]
Rosiglitazone 54, 89, 90]

References are listed in brackets. f = Stimulation; { = inhibition; = = no change.

Martin et al. [43] showed that diet-induced obesity (DIO) in mice alters the effect
of leptin on AMPK activity both in skeletal muscle and in the hypothalamus. Leptin
increases AMPK activity in the skeletal muscle of chow-fed mice and decreases it in
the hypothalamus of the same animals but does not have an effect in the DIO mice.
While, most interestingly, a ciliary neurotrophic factor analogue (CNTFAx15) given
intracerebroventricularly not only reduces food intake in high-fat diet (HFD) mice
but also suppresses hypothalamic AMPK activity, bypassing therefore diet-induced
leptin resistance [44]. Rats on an HFD for 5 months exhibited decreased AMPK
phosphorylation and expression in skeletal muscle associated with decreased levels
of ACC and GLUT4 as well. Metformin treatment restored insulin sensitivity and
increased AMPK activity [45].

In Zucker rats who do not respond to leptin treatment because of defects in the
leptin receptor, administration of the AMPK activator AICAR results in leptino-
mimetic effects, leading to the prevention of ectopic lipid deposition and diabetes
[46]. Transgenic mice over-expressing leptin in liver are lean on a chow diet but
despite the high pre-existing leptin levels become obese and insulin resistant on an
HFD [47]. HFD for 15 weeks abolishes the increase in muscle AMPK activity
observed in the same animals on a chow diet.

Short hepatic over-expression of a constitutively active form of AMPK decreased
blood glucose levels in normal mouse, abolished hyperglycaemia in streptozotocin-
induced and in ob/ob mice and also reduced gluconeogenic enzyme expression. The
resulting low glucose levels led to a switch from glucose utilisation to fatty acid utili-
sation, associated with a decrease in white adipose tissue mass and development of
fatty liver [48].
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Table 2. AMPK changes in animal models of obesity

Animal model AMPK-related changes Reference
Obese Zucker fa/farat ~ AICAR increased muscle glucose transport and suppresses [91,92]
endogenous glucose production and lipolysis
Reduced AMPK and ACC phosphorylation LKB1 activity [90]
and PGC-1 content
Rosiglitazone restores AMPK o2 activity in skeletal [46, 93]
muscle

Chronic AICAR/exercise training prevented
hyperglycaemia and increased whole-body
insulin sensitivity

ob/ob and db/db mice  AICAR and short hepatic over-expression of a constitutively [48, 94]
active form of AMPK decreased blood glucose levels

HFD in rats Reduction of AMPK activity, ACC and GLUT4 levels in [45]
skeletal muscle. Metformin increases AMPK activity
Rosiglitazone enhanced AICAR-stimulated glucose [95]

uptake in muscle and adipose tissue. Total AMPK and
AMPK a2 activity increased in muscle

DIO mouse AICAR administration blocked weight gain, reduced total [96]

content epididymal fat and lipid accumulation in
adipocytes, restored adiponectin levels, improved glucose
tolerance and insulin sensitivity

DIO mice compared to chow-fed mice ate less, had lower [43]
respiratory exchange rate and lower ACC activity in
muscle. Leptin did not improve either of these
parameters or the AMPK a2 activity in muscle and
hypothalamus of the DIO

Ciliary neurotrophic factor analogue reduced food intake [44]
and AMPK hypothalamic activity, bypassing therefore
diet-induced leptin resistance

Adiponectin inhibits glucose production in wild-type mouse and also in T2D
mouse (ob/ob, non-obese diabetic or streptozotocin-treated mice) [49] and the
effect of adiponectin is completely dependent on the presence of hepatic AMPK a2
subunit [50].

Studies on ob/ob and adiponectin double knockout mice or knockout only for
adiponectin showed an impaired ability to improve glucose tolerance with rosiglita-
zone treatment and this was, at least partly, due to reduced activation of AMPK [51].
These results not only showed the role of adiponectin as a TZD mediator but also
confirm the importance of AMPK activation in the mechanism of action of TZD type
anti-diabetic drugs.
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AMPK in Human Obesity

The majority of the research studies published have been performed on animals,
and it is important to establish that their conclusions can be extrapolated to human
physiology and pathology as the number of studies about AMPK activity in human
diseases is much more limited. Skeletal muscle AMPK activity has been analysed in
a limited number of obese vs. lean subjects, in obese diabetic versus obese non-
diabetic patients and in healthy subjects before and after exercise. Obesity in
humans is associated with leptin and insulin resistance and lipid accumulation.
Adiponectin or AICAR activate muscle AMPK in obese rodents, which stimulates
fatty acid oxidation, and it is reasonable therefore to hypothesise that pharmacologi-
cal activation of AMPK might be of therapeutic benefit in human obesity. However,
AMPK is not down-regulated in human skeletal muscle of obese females [52] and
AMPK activity and specific isoform expression are similar in muscle of obese sub-
jects with and without T2D [53]. These data suggest that impaired insulin action on
glycogen synthesis and lipid oxidation in skeletal muscle of these patients is
unlikely to involve changes in AMPK expression and activity. However, AICAR
treatment of muscle biopsies stimulated AMPK o2 activity and fatty acid oxidation,
suggesting that AMPK activation above basal levels may still be a valid therapeutic
approach [52]. In contrast to the previous studies, Bandyopadhyay et al. [54] showed
that there is a decrease in AMPK activity and an increase in ACC activity in insulin-
resistant muscle from obese and from T2D patients that results in elevated intracel-
lular levels of malonyl-CoA. Because, for the most part, the defects appear to be
expressed equally in the obese subjects and in T2D subjects (who were also obese),
the authors conclude that these differences from lean control subjects are caused by
insulin resistance/obesity rather than hyperglycaemia/diabetes. Finally, when the
T2D subjects were treated for 3 months with rosiglitazone, the various defects in
fatty acid and mitochondrial metabolism reverted towards normal. The beneficial
effect of AMPK activation in muscle was demonstrated in a study which showed
that acute intensive exercise (3h) increased AMPK and ACC phosphorylation
altogether with an increase in expression of adiponectin receptor in the skeletal
muscle of 5 healthy females [55]. Interestingly, Roepstorff et al. [56] showed that
AMPK activation in muscle is sex-dependent: 90 min of exercise activated AMPK
in skeletal muscle of healthy male volunteers but in contrast to the former study,
not in females. Further data are needed to study the role of oestradiol on skeletal
muscle AMPK activity. The effect of exercise on AMPK is probably due, at least in
part, to IL-6, which is synthesised and released from skeletal muscle in large
amounts during exercise [57], and in rodents, the resultant increase in IL-6 concen-
tration correlates with increases in AMPK activity in multiple tissues. There are
no direct data of the effect of IL-6 on AMPK activity in humans but IL-6 treatment
was recently shown to enhance insulin-stimulated glucose disposal in humans
in vivo [58].
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Role of AMPK in Cardiovascular Disease

Cardiovascular disease is a common consequence of obesity and obese patients are
often treated for hypertension, atherosclerosis, and heart failure. AMPK is a key reg-
ulator of energy metabolism in the heart, too [for an extensive review on the topic, see
59]. The obvious beneficial effects of AMPK activation in ischaemia could be coun-
terbalanced by the excessive fatty acid oxidation and reduced glucose oxidation lead-
ing to accumulation of pyruvate and protons [59]. In view of this and in view of the
fact that AMPK is proposed as a possible target for obesity and diabetes treatments, it
is important to know the role of AMPK in cardiac physiology and pathology in order
to avoid possible side effects of future AMPK activators/inhibitors.

AMPK as an Overall Metabolic Regulator

In conclusion, AMPK has emerged as a key regulatory enzyme of cell and whole body
metabolism. It influences cell metabolism in a way that favours insulin sensitivity and
maintains a favourable body energy homeostasis. It is the mediator of the metabolic
effects of many of the known hormones, nutrients and drugs. Thus, not only are
changes in AMPK implicated in the pathogenesis of insulin-resistant states, but
AMPK might also constitute a target for new treatments of these conditions.
However, a note of caution is required as generalised AMP activation might result in
unwanted effects (i.e. an appetite-stimulating effect and B-cell inhibition), and thus
there is a need for tissue-specific modulators.
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