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ABSTRACT: Obesity, a primary influence on health condition, causes numerous comorbidities and complications and,
therefore, pharmacotherapy is considered a strategy for its treatment. However, the adverse effects of most chemical drugs
targeting weight loss complicate their approval by regulatory authorities. Recently, interest has increased in the development of
ingredients from natural sources with fewer adverse effects for preventing and ameliorating obesity. This review provides an
overview of current anti-obesity drugs and natural products with anti-obesity properties as well as their mechanisms of action,
which include interfering with nutrient absorption, decreasing adipogenesis, increasing energy expenditure (thermogenesis),
appetite suppression, modifying intestinal microbiota composition, and increasing fecal fat excretion.
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■ INTRODUCTION

Obesity is a condition of excessive body fat due to extreme
disequilibrium between energy uptake and expenditure, and it is
a global epidemic.1 Moreover, obesity contributes to various
chronic diseases, such as type 2 diabetes (T2D), hyper-
lipidemia, cardiovascular disease (CVD), hypertension, cere-
brovascular incidents, and obstructive sleep apnea.2

Food consumption is thought to drive hormone peptide
regulation in the hypothalamus and gut with regard to appetite
modulation,3 and “palatable foods” induce hyperphagia and
excessive fat accumulation, as well as increased fatty acid
oxidation within muscles and decreased anorexigenic hor-
mones, such as cholecystokinin (CCK).4

Currently, multiple therapeutic options are available to treat
obesity such as diet modification, exercise, behavioral changes,
surgery, and pharmacotherapy. Among these, pharmacotherapy
is the most common, although numerous drugs used to reduce
weight have associated side effects5 and ,specifically, fenflur-
amine,6 rimonabant, and sibutramine7 were withdrawn from
the market because of dangerous side effects. Therefore, orlistat
is the only medication approved for long-term use worldwide,
although uncomfortable adverse events are associated with its
use.8 Furthermore, lorcaserin and the fixed-dose drugs
phentermine and topiramate were approved for weight loss,9

but their side effects were problematic. Therefore, other sources
of weight loss drugs, such as natural products, are being
investigated.10−12

In this review, we focused on the mechanisms of action of the
anti-obesity drugs shown in Table 1 and included descriptions
of natural products with potential anti-obesity properties, which
are summarized in Tables 2 and 3. The active ingredients from
natural products are categorized on the basis of their effects as
follows: (1) interfering with nutrient absorption, (2) decreasing
adipogenesis and enhancing energy expenditure (thermo-
genesis), (3) suppressing the appetite, and (4) modifying the
intestinal microbiota composition and increasing fat excretion.

■ MECHANISMS OF ANTI-OBESITY EFFECT OF
CHEMICAL DRUGS

Signal Transduction. The 5-hydroxytryptamine (5-HT,
serotonin) receptor agonists, fenfluramine and lorcaserin, show
their anti-obesity effect by promoting 5-HT release and
reducing food intake in rodents in a manner consistent with
increased satiety.13 However, fenfluramine showed a specific
toxicity in the form of cardiac valvulopathy, which prompted
the manufacturers to withdraw it from the market.14 Lorcaserin
is a selective 5-HT2C-receptor agonist, and its characteristic
minimal activity at both the 5-HT2A and 5-HT2B receptors,
which are linked to the development of valvular heart disease,15

contributed to its approval in 2012.16,17 Rimonabant is a
selective reverse agonist of the cannabinoid receptor type 1
(CB1) receptor, which increases during the differentiation of
pre-adipocytes and the biosynthesis of triacylglycerol (TG) and
fatty acid.18 It was approved for the treatment of obesity in
2006;19 however, anxiety, suicidal thoughts, depressive
disorders,20 and related cardiometabolic risk abnormalities
were reported,21 and hence the drug was removed from the
market. The inhibition of pancreatic lipase suppresses the
intestinal absorption of dietary TGs to reduce fat absorption.22

Orlistat was the first selective irreversible lipase inhibitor23 to
be approved in 1999,14,24 and compared with other anti-obesity
drugs, its side effects are limited.25 Cetilistat is another
pancreatic lipase inhibitor that is currently in phase III clinical
trials. Compared with orlistat, the tolerability of cetilistat
appears to be better,26 and its adverse effects are mild to
moderate.27 Nevertheless, more studies are still required to
confirm its safety in humans. Glucagon-like peptide-1 (GLP-1)
is a gut hormone released from the intestine, which facilitates
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the secretion of glucose-dependent insulin from pancreatic islet
cells and represses glucagon release, leading to a subsequent
glucose-dependent decrease in hepatic glucose production.28

Moreover, GLP-1 receptor agonists have been shown to induce
clinically relevant reductions in body weight by decreasing
calorie intake.29,30 Exenatide and liraglutide are GLP-1 receptor
agonists approved by the U.S. Food and Drug Administration
(FDA) for treating obesity and diabetes in 200531 and 2014,32

respectively.
Drugs with Multiple Mechanisms of Action. Some

drugs that influence energy balance via 5-HT and norepinephr-
ine (NE) neural pathways in the central nervous system (CNS)
have been studied for treating eating disorders and obesity.33

The 5-HT-NE re-uptake inhibitor, sibutramine, approved by
the FDA in 1997, was used as an anti-obesity drug because of
its ability to influence feelings of hunger and satiety at the CNS
level.34 However, cardiovascular complications possibly arising
from thrombus formation after sibutramine treatment led to its
market withdrawal in 2010.35 Synergism between neuropeptide
Y2 and Y4 receptor signaling in controlling fat mass may be
linked to differences in mitochondrial oxidative capacity, which
increase peroxisome proliferator-activated receptor (PPAR)-γ
gamma coactivator 1-α (PGC-1α) and mitochondrial respira-
tory chain complexes I and III.36 A dual neuropeptide Y2/Y4
receptor agonist, obinepitide, has a long-term influence on
suppressing appetite and reducing body weight in rodents and
is presently in phase II clinical trials. Fixed-dose combination
drugs such as phentermine plus topiramate and bupropion plus
naltrexone have been of interest for promoting weight loss.
Phentermine/topiramate, a sympathomimetic and antiepileptic
drug combination, was approved in 2012 for weight manage-
ment.37 The combination of bupropion and naltrexone, which
blocks dopamine (DA) and NE re-uptake and antagonizes
opioid receptors, was approved in 2014.38 However, there is a
risk of suicide and neuropsychosis because of the bupropion
component except for the common side effects.38

Some anti-obesity agents influence monoaminergic activity,
and those that selectively inhibit the re-uptake of 5-HT, NE,
and DA have been variously approved. Moreover, the
combination of inhibitors of monoamine neurotransmitter
transporters can synergistically increase anti-obesity effects.39

Tesofensine, which inhibits the re-uptake process of DA, NE,
and 5-HT, is under study as a weight loss aid40 in phase III
clinical trials.41 In addition, the adverse effects and details of the
anti-obesity effects of chemical drugs are summarized in Table
1.

■ MECHANISMS OF ANTI-OBESITY EFFECT OF
NATURAL PRODUCTS

Inhibiting Digestive Enzyme Activity. Pancreatic Lipase
Inhibitors. Most of the fat consumed in the Western diet
comprises TGs or esters of a single molecule of glycerol and
three fatty acids, which are metabolized and absorbed in the
gut.42 Dietary TGs that cannot be absorbed are hydrolyzed by
pancreatic lipase secreted from the pancreas to promote their
absorption in the small intestine.43 TGs are separated by
pancreatic lipase into monoacylglycerol and free fatty acids that
are combined with bile acids, cholesterol, and lysophosphatidic
acid (LPA) to form mixed micelles. Mixed micelles are
assimilated into enterocytes, which ultimately resynthesize
TGs stored in adipocytes12 (Figure 1). However, the utilization
of ingested lipids and absorbed sugars is diminished when lipid
hydrolysis is inhibited by a pancreatic lipase inhibitor. Some
natural products may inhibit pancreatic lipase44 because
reduced fat absorption can improve diabetes45 and, therefore,
may be an option for weight loss treatment.
As a pancreatic lipase inhibitor, orlistat, with a median

inhibitory concentration (IC50) of 0.7 μM, is the only anti-
obesity agent approved by the FDA for long-term clinical use.
Orlistat’s side effects are unacceptable for numerous patients
and, therefore, discovering new potent pancreatic lipase
inhibitors (Table 2) with fewer adverse effects from plants is
a desirable approach. Additionally, the mechanisms of action of

Table 1. Current Situation of Anti-obesity Drugs Based on Mechanismsa

mechanism drug
efficacy
(%) safety and tolerability concerns stage of development

signal transduction
5-HT receptor agonist fenfluramine 5−6 cardiac valvulopathy, pulmonary and hypertension approved in 1973;

withdrawn in 1997
lorcaserin 3−4 dizziness, headache, insomnia, and possible risk of

valvulopathy in obese type 2 diabetics
approved in 2012

CB1 receptor inhibitor rimonabant 6−7 depression disorders, anxiety, suicidal thoughts, and related
cardiometabolic risk abnormalities

approved in 2006;
withdrawn in 2008

pancreatic lipase inhibitor orlistat 3−4 malabsorption, vitamin deficiencies, oily stools,
gastrointestinal tract discomfort

approved in 1999

cetilistat <5 steatorrhea and gastrointestinal side effects phase III
GLP-1 receptor agonist exenatide 4−6 transient nausea, vomiting, hypoglycaemia, and risk for

pancreatitis
approved in 2005

liraglutide 5−6 nausea, diarrhea, hypoglycemia, and risk for pancreatitis approved in 2014
poly mechanisms
5-HT/NA re-uptake inhibitor sibutramine 5−6 serious cardiovascular complications, increased risk for stroke

and myocardial infarction
approved in 1997;
withdrawn in 2010

neuropeptide Y2/Y4 receptor agonist obinepitide <5 adverse cardiovascular effects phase II
NA agent and anti-epileptic drug phentermine with

topiramate
9−10 paresthesia, constipation, dysgeusia, dizziness, insomnia,

psychosis, and teratogenicity
approved in 2012

DA/NA re-uptake inhibitor and opioid
receptor antagonist

bupropion with
naltrexone

3−6 nausea, headache, vomiting, constipation, insomnia, risk of
suicide and neuropsychosis

approved in 2014

5-HT/DA/NA re-uptake inhibitor tesofensine 9−11 increased heart rate and blood pressure phase III
aSources: Rodgers et al;14 Adan;162 Shin and Gadde;170 Solas et al;171 Wong.163
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active ingredients for inhibiting pancreatic lipase are shown in
Figure 1.
Platycodins, a group of saponin glycosides from the root of

Platycodon grandiflorum (family Campanulaceae) with an IC50
of 20 mg/mL, are considered partly responsible for decreasing
dietary lipid digestion and absorption by inhibiting pancreatic
lipase.46 Compared to the control diet, platycodin-enriched
diets (low, 0.3−0.5% platycodin in the aqueous extract of
platycodi radix; high, 0.9−1.0% platycodin in crude platycodin-
enriched saponins) reduced total cholesterol (TC) in the
plasma (13−28%, p < 0.05) and the liver (41−79%, p < 0.05)
and whole body cholesterol. Furthermore, it promoted the
excretion of cholesterol (p < 0.05) and reduced the risk for
cardiovascular diseases.47 In addition, Han et al.48 suggested
that the study group treated with 5% platycodi radix aqueous
extract (570 mg/kg) showed a reduction in final parametrial
adipose tissue weights (p < 0.05) and decreased body weight (p
< 0.05) as well as hepatic and plasma TG (p < 0.05) compared
with the high-fat (HF) diet groups through suppressing the
intestinal absorption of dietary lipids.
Saponins such as chiisanoside, sessiloside, and isochiisanoside

(IC50 = 0.36, 0.75, and 4.0 mg/mL, respectively) have been
isolated from the leaves of Acanthopanax sessiliflorus (family
Araliaceae) and investigated for the suppression of pancreatic
lipase.49 Supplementation of an HF diet-induced obese mouse
model with chiisanoside (100 or 300 mg/kg) lowered serum
TG (p < 0.05), and the strongest effect was evident 4 h after
administration. In addition, it lowered the elevated undigested
TG (p < 0.05) in the intestinal lumen after oil gavage,
suggesting that chiisanoside inhibited dietary fat absorption.50

Fruits of another species of Acanthopanax, Acanthopanax
senticosus (family Araliaceae), contain the major saponins
silphioside F and copteroside B (IC50 = 0.22 and 0.25 mM,
respectively). The free carboxylic acid groups at position 28 in
these compounds increase their inhibition of pancreatic
lipase.51 According to Cha et al.,52 the oral administration of
A. senticosus extract (500 mg/kg) significantly reduced weight
gain (p < 0.05), plasma low-density lipoprotein cholesterol
(LDL-C, p < 0.05), and liver TG accumulation in HF diet-
induced obese mice.
Rhizomes of Alpinia officinarum (family Zingiberaceae) are

rich in bioactive compounds, such as 3-methyl ethergalangin
and 5-hydroxy-7-(49-hydroxy-39-methoxyphenyl)-1-phenyl-3-
heptanone, and inhibit pancreatic lipase (IC50 = 1.30 and
1.50 mg/mL, respectively).53,54 In an HF diet-induced animal
model, A. officinarum ethanolic extract (3 and 5% w/w)
significantly suppressed weight gain (p < 0.05) and reduced the
epididymal and perirenal white adipose tissue (WAT, p < 0.05).
In addition, it improved plasma lipids by reducing TC, TG,
LDL-C, leptin, and serum atherogenic indices (all p < 0.05), as
well as reversed pathological changes in the liver and adipose
tissue.55

Betulinic acid (BA), a pentacyclic triterpenic acid, is widely
distributed in various plants such as Clusia nemorosa (family
Clusiaceae).56 The anti-obesity effect of BA has been
investigated with respect to the inhibition of pancreatic lipase
and amylase.57 BA inhibited pancreatic lipase (IC50, 21.10 μM)
at concentrations of 1.5−100 μM in a dose-dependent manner
in vitro and significantly reduced serum TG (p < 0.01) 2 h after
the administration of 50 or 100 mg/kg. The effect of BA in
reducing TG is similar to that of orlistat (45 mg/kg, p < 0.01)
compared to that observed in the untreated control groups. In
addition, BA’s lipolytic effect was mediated by suppressingT
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cyclic adenosine monophosphate (cAMP)-dependent phos-
phodiesterase (p < 0.01), and it may accelerate lipid
mobilization by increasing lipolysis in adipose tissues.57

Crocin and crocetin are bioactive ingredients isolated from
Gardenia jasminoides (family Rubiaceae). They inhibited
pancreatic lipase (IC50 = 2.1 and 2.6 mg/mL, respectively),
reduced weight gain (p < 0.05) and epididymal fat pad mass
elevation (p < 0.05), and suppressed serum TG (p < 0.05), TC,
and LDL-C (p < 0.05) at a dose of 50 mg/kg in hyperlipidemic
mice.58 Furthermore, they increased fecal excretion of fat (p <
0.05) and cholesterol (p < 0.01) at a dose range of 25−100 mg/
kg in rats,59 which are similar to the effects of xenical and
lovastatin (both 10 mg/kg, p < 0.05) and may improve obesity
pathophysiology.
The active ingredients of Panax ginseng,60 Panax quinquefo-

lium,61 Panax japonicus,62 Aesculus turbinata,63,64 green tea,
gomchui,65 and oolong teas,66 Eisenia bicyclis,67 Glycyrrhiza
uralensis,68 Acacia mearnsii,69,70 Actinidia arguta,71 Rosmarinus
officinalis,72 Salvia officinalis,73 Sapindus rarak,74 Ginkgo biloba,75

Calotropis procera,76 Dioscorea nipponica,77 and Cudrania
tricuspidata78 as well as their plant parts used are shown in
Table 2. These extracts inhibit pancreatic lipase to reduce
plasma TGs and fat absorption, which reduces calories from fat
intake.

Amylase Inhibitors. For many individuals, carbohydrates are
the most abundant source of calories. Because carbohydrates
range from monosaccharides to polysaccharides, such as
polyhydroxy aldehydes, ketones, alcohols, and acids, which
can be degraded into monosaccharides by amylase, the
blockade of amylase may inhibit carbohydrate absorption.79

Therefore, amylase inhibitors (Table 2) may contribute to
weight loss.
The leaves of Salix matsudana (family Berberidaceae) are rich

in polyphenol compounds that are reported to inhibit intestinal
fat absorption and decrease plasma TG in rats. Moreover, 5%
polyphenol fractions caused carbohydrate malabsorption by
inhibiting α-amylase in the small intestine.80 Active compounds
from the polyphenol fractions of S. matsudana leaves that
inhibit α-amylase include apigenin-7-O-D-glucoside (IC50 =
0.20 mg/mL), which significantly reduced weight and para-
metrial adiposity (both p < 0.05) in addition to hepatic TC
compared to the HF diet groups.80,81

Extracts of Phaseolus vulgaris (family Fabaceae) beans have
been studied as potential α-amylase inhibitors for controlling
food consumption, weight, lipid accumulation, and glycemia.79

The literature suggests that supplementation of rats with
extracts of P. vulgaris derivatives may reduce food intake (15%,
p < 0.05), weight, lipid deposition, and glycemia (p < 0.05)
compared to the unsupplemented vehicle control rats, and may
reduce starch digestion, postprandial plasma hyperglycemia,
and insulin.79,82 In addition, the extracts might increase
resistant starch, carbohydrate tolerance, and colorectal bacterial
activity,79 which may be exploited for improving metabolic
syndromes.
The flavonoids extracted from Nelumbo nucifera leaves

inhibited α-amylase and α-glucosidase (IC50 = 0.82 and 1.86
mg/mL, respectively).83 Treatment with N. nucifera leaf extract
reduced weight gain, parametrial adipose tissue (both p < 0.01),
and liver TG (p < 0.05) in HF diet-induced obese mice, which
reduced lipid accumulation in the liver and obesity.84 Similarly,
condensed tannin-rich extracts of the pinhaõ coat (Araucaria
angustifolia seeds) inhibited α-amylase by blocking glucoseT
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absorption derived from starch, which may have anti-obesity
actions.85

Reduced Formation of WAT. Adipose tissue is a complex
organ with a profound influence on physiology and
pathophysiology. Adipose tissues can be classified as white
(WAT) or brown (BAT).86 WAT is essential for lipid
homeostasis and energy balance by ensuring high-efficiency
energy storage and rapid fat mobilization for peripheral
demands.87 WAT is organized into discrete anatomical depots
of subcutaneous adipose tissue (SAT) and visceral adipose
tissue (VAT) expansion, which contribute to obesity and its
complications.88 WAT expansion occurs with adipocyte
hyperplasia or amplification of size (hypertrophy). Hyperplasia
of WAT indicates an enhanced de novo formation (adipo-
genesis), and hypertrophy is tightly linked to adipose
dysfunction, which is critical to the development of metabolic
syndromes in the obese.89 Therefore, the strict regulation of
WAT development and function may be needed to maintain
energy homeostasis, and understanding the mechanisms
controlling adipogenesis may help guide obesity treatment.
In contrast, the expansion of BAT or “browning” of WAT, an

oxidative anti-lipotoxic process that can decrease deleterious
effects and lipid overspill induced by dysfunctional WAT, is
thought to be a potential therapeutic target for treating obesity
and related metabolic diseases in rodents and humans.90 Brown
adipocytes are highly specialized cells that dissipate stored
energy as heat through β-adrenergic receptors.87 In addition,

they also act in this context by stimulating uncoupling protein-1
(UCP-1), a mitochondrial BAT-specific protein that catalyzes
proton leak across the inner mitochondrial membrane and
uncouples substrate oxidation from adenosine triphosphate
(ATP) synthesis.86 Chronic cold exposure can increase BAT or
recruit increased BAT mass in rodents, thereby enhancing
thermogenesis. Moreover, UCP1-expressing thermogenic adi-
pocytes have been identified in WAT in the form of WAT
browning (beige adipocytes).91 Beige adipocytes possess low
basal UCP1 expression similar to white adipocytes, whereas
brown adipocytes respond to cAMP stimulation with high
UCP1 expression and respiration rates, which are preferentially
impressible by irisin.92 Facilitating BAT recruitment mass/
activity and beige adipocytes to enhance mitochondrial UCP1
expression-mediated thermogenic effects may provide a
potential therapeutic strategy for treating obesity.90 Botanicals
that reduce WAT formation and increase BAT and beige
adipocytes are summarized in Table 3, and their mechanisms of
action in inhibiting adipogenesis are illustrated in Figure 2.
Chitosan oligosaccharides (COS) are derivatives of chitosan

(CTS)93 with 2−10 degrees of polymerization, and through the
β-1,4 glycosidic linkage of glucosamine and N-acetylglucos-
amine,94 they possess anti-obesity and lipid-lowering proper-
ties.95,96 Huang et al.97 reported that subjects treated with low
molecular mass COS (Mw, 1000, 250−1000 mg/kg) showed
less weight gain than those treated with high molecular mass
COS (Mw, 3000, 250−1000 mg/kg) and orlistat (75 mg/kg).

Figure 1. Main routes of lipid absorption regulated with active ingredients. Dietary fat comprises 90% triacylglycerols (TGs). TGs are hydrolyzed by
pancreatic lipase into MGs and FAs that are combined with bile acids, cholesterol, and LPAs to form mixed micelles. Mixed micelles are assimilated
into enterocytes, which are where TGs that are finally stored in WAT are resynthesized. Inhibition of pancreatic lipase by active ingredients impedes
the hydrolysis of TGs and the formation of mixed micelles. Subsequently, the absorption of mixed micelles and the resynthesis of TGs in enterocytes
are reduced, and the TG level in excretion is increased, resulting in the alleviation of fat metabolism disorders and fat accumulation and the
improvement of obesity. MG, monoglyceride; FA, fat acid; LPA, lysophosphatidic acid; WAT, white adipose tissues; FFA, free fat acid. Solid arrow,
promoting effect; dashed arrow, inhibiting effect; black arrow, normal action; red arrow, action of active ingredients.
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Additionally, serum TC (p < 0.01), TG (p < 0.05), and LDL-C
(p < 0.01) were diminished and PPARγ, p < 0.01) and liver X
receptor α (LXRα, p < 0.01) mRNA expressions in epididymal
adipose tissue were down-regulated in the COS groups. This
action was superior to that of orlistat compared to the HF
groups, suggesting that low and high molecular mass COS
could prevent weight gain and treat obesity and dyslipidemia by
inhibiting the differentiation of adipocytes in obese rats with
few side effects.97

Curcumin, the phenolic yellowish pigment from Curcuma
longa rhizomes, can lower lipids and prevent obesity-associated
complications98 by activating Wnt/β-catenin signaling and
suppressing 3T3-L1 adipocyte differentiation.99 Compared to
the mice in the untreated HF diet groups, those supplemented
with 500 mg/kg dietary curcumin showed a significant decrease
in weight, total body fat, and serum cholesterol (all p < 0.05).
In vitro, curcumin (5−25 μM) elevated 5′-AMP-activated
protein kinase (AMPK) phosphorylation and carnitine
palmitoyltransferase-1 expression (p < 0.05) but decreased
glycerol-3-phosphate acyl transferase-1 expression. These
actions reduced fatty acid esterification and enhanced fat
oxidation (p < 0.05). In addition, curcumin significantly
decreased the expression of PPARγ (p < 0.05) and CCAAT-
enhancer binding protein α (C/EBPα, p < 0.05), which are two
key transcription factors in adipogenesis, and this effect
modified lipid metabolism in adipocytes and inhibited white
adipogenesis.100

Capsaicin, the major ingredient in Capsicum annuum,
increases the expression of browning-specific genes in
subcutaneous WAT and increases thermogenesis and mito-

chondrial biogenesis genes in BAT.101 Suppression of 3T3-L1
pre-adipocyte differentiation into adipocytes was observed in
low-dose capsaicin (0.1−1 μM)-treated groups compared to
the untreated control pre-adipocyte groups, suggesting an anti-
adipogenic effect (p < 0.05) through the activation of the
transient receptor potential vanilloid type-1 (TRPV-1) channel
and induction of a brown-like phenotype.102 Furthermore, a
0.01% capsaicin diet markedly up-regulated UCP2 and UCP3
(p < 0.01 and <0.05, compared to the control and HF diet
groups, respectively) expression in mature adipocytes of visceral
fat, promoting fat oxidation and energy expenditure.103

Capsaicin combined with chitosan as a microsphere had
additive obesity-reducing effects.104,105

Celastrol, from the stem of the roots of Tripterygium wilfordii,
is a pentacyclic triterpene and a potent anti-obesity agent.
Celastrol (0.1 mg/kg) is a leptin sensitizer, which enhanced
plasma leptin (p < 0.001), decreased appetite (p < 0.001), and
promoted a 45% weight loss (p < 0.001) in diet-induced obese
mice by improving leptin sensitivity compared to the untreated
vehicle groups.106 Moreover, thermogenesis (BAT level), white
fat remodeling, and mitochondrial function in the fat (p < 0.01)
and muscle (p < 0.05) were improved by celastrol (1 and 3 mg/
kg) compared to the HF diet groups.107 This occurred by the
activation of the HSF1-PGC1α transcriptional axis, which
increased HSF1 (p < 0.01), a temperature sensor regulating
energy metabolism, compared to that of the HSF1 knockout
groups.107

According to reports in the literature, agents derived from
black soybeans,108,109 Salacia reticulata,110−112 and Wasabia
japonica (wasabi)113,114 reduce pre-adipocyte differentiation

Figure 2. Main routes of anti-adipogenesis and energy expenditure regulated with active ingredients. Adipocyte precursors develop into WAT and
BAT via proliferation and differentiation. WAT expansion occurs with adipocyte hyperplasia or amplification of size (hypertrophy). Hyperplasia of
WAT indicates an enhanced de novo formation (adipogenesis), and hypertrophy is tightly linked to adipose dysfunction, which is critical to the
development of fat metabolism disorders, giving rise to increased plasma FFAs level, the facilitation of fat systhesis, and excess fat accumulation.
Suppression of proliferation and differentiation in adipocyte precursors by active ingredients decreases hyperplasia and hypertrophy of adipocytes,
elicits WAT reduction and fat metabolism disorders amelioration, and diminishes plasma FFAs and fat systhesis, leading to the alleviation of fat
accumulation. Additionally, stimulation of brown adipocyte precursors by active ingredients increases the activation of BAT thermogenesis, resulting
in energy expenditure. Moreover, action of active ingredients on white adipocyte precursors induces beige adipocyte formation to activate and recruit
BAT. PPARγ, peroxisome proliferator-activated receptor γ; C/EBPα, CCAAT-enhancer binding protein α; BAT, brown adipose tissues; WAT, white
adipose tissue; UCP-1, uncoupled protein 1; FFA, free fat acid. Solid arrow, promoting effect; dashed arrow, inhibiting effect; black arrow, normal
action; red arrow, action of active ingredients.
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and suppress fat accumulation. The potential molecular
pathways mediating these effects are shown in Table 3. In
addition, some plants that contain vitisin A,115 carnosic acid,
and carnosol,116,117 as well as Platycodon grandiflorum extract118

allegedly reduce white adipogenesis (Table 3). Notably,
carnosic acid and carnosol are suggested neurotoxins owing
to the presence of α-thujone.119

Appetite Regulation. The disequilibrium between energy
intake and expenditure is proposed as the cause of obesity.
Therefore, drugs to decrease energy intake or increase energy
expenditure or both without adverse effects are currently of
interest because energy intake is highly variable and energy
expenditure is modulated chiefly by physical exercise.120

Sibutramine and fenfluramine reduce food intake and increase
satiety by acting on 5-HT/NE neural pathways and the 5-HT
receptor, respectively; however, because of their side effects,
they were withdrawn from the market.14 Therefore, researchers
are studying natural products (Table 3) as alternative sources of
weight loss agents, and the mechanisms of action of some active
ingredients for appetite regulation are shown in Figure 3.
The hypothalamus arcuate nucleus (ARC) and brainstem

facilitate the regulation of appetite through numerous signaling
pathways, and this area contributes to balancing energy and
glucose. The complicated central and peripheral neuroendo-
crine signaling pathways include approximately 40 orexigenic
and anorexigenic hormones, neuropeptides, enzymes, and other
chemical signaling molecules and their receptors, and these
positively or negatively respond to appetite and satiety.121

Neuropeptide (NPY), agouti-related peptide (AgRP), and
melanin-concentrating hormone (MCH) are orexigenic signal-
ing molecules, whereas proopiomelanocortin (POCM), co-
caine, amphetamine-regulated transcript (CART), nesfatin-1, 5-

HT (5-HT1B and 5-HT2C), DA, and NE are anorexigenic
mediators in the hypothalamus.121 NPY and AgRP expression is
up-regulated by fasting and suppressed by leptin, a peptide
produced in adipose tissues. Leptin increases following
overfeeding and decreases with starvation. In contrast, leptin
stimulates POCM and CART neurons, and POCM expression
is reduced via fasting.122 In addition, nesfatin-1, a novel
anorectic peptide, is an amino-terminal fragment of NEFA/
nucleobindin2 (NUCB2), and starvation weakens its expression
in the hypothalamic paraventricular nucleus.123

Furthermore, numerous individuals with obesity have high
leptin levels and are resistant to its effect on metabolism,124 so
targeting the leptin pathway for treating obesity may not be
feasible. However, short-term signals from the gastrointestinal
tract are crucial to appetite regulation and may be a more
desirable target for obesity treatments. These signals that sense
starvation before a meal and postprandial satiety are not
considered primarily controlled by leptin.125 The gastro-
intestinal tract is the largest endocrine organ and releases
more than 20 diverse peptide hormones to regulate
physiological processes, and they are especially sensitive to
the nutritional status of the gut and, thus, influence the
regulation of appetite125 (Figure 3). Ghrelin, an appetite-
stimulating peptide hormone, consists of 28 amino acids and is
secreted from the stomach into the circulation.126 Ghrelin is
enhanced by fasting and is a confirmed orexigenic substance
because central or peripheral supplementation of acylated
ghrelin stimulates food intake and leads to weight gain.125

Moreover, several desired models of anorexigenic signals are
produced in the gastrointestinal tract such as those involving
the peptide tyrosine−tyrosine (peptide YY, PYY)3−36, CCK,
and GLP-1.127 PYY3−36 regulates the neural activity of the

Figure 3. Role of major hormones adjusted with active ingredients in appetite regulation. Activation of anorexigenic peptides and suppression of
orexigenic peptides by active ingredients in hypothalamus increase the release of CART, POMC, 5-HT, DA, NE, and nesfatin-1 and decrease NPY,
AgRP, and MCH levels, resulting in the satiety (stop eating) increase and food intake (start eating) reduction. Additionally, the appetite regulation of
active ingredients on the gastrointestinal tract decreases ghrelin in stomach and increases intestinal CCK, GLP-1, and PYY levels, which promote the
pancreas to release insulin. Moreover, leptin released from adipose tissues also affects the brain to regulate appetite. NPY, neuropeptide Y; AgRP,
agouti-related protein; MCH, melanin-concentrating hormone. Anorexigenic peptides: CART, cocaine- and amphetamine-regulated transcript;
POMC, pro-opiomelanocortin; CCK, cholecystokinin; GLP-1, glucagon-like peptide-1; PYY, peptide YY. Solid arrow, promoting effect; dashed
arrow, inhibiting effect; red arrow, orexigenic pathway; blue arrow, anorexigenic pathway.
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corticolimbic and higher cortical areas and homeostatic brain
regions, which alter neural activity in the caudolateral orbital
frontal cortex to control food intake during high plasma PYY
phases, whereas hypothalamic activation predicts feeding
behavior during low PYY.128 CKK stimulates gallbladder
contraction and pancreatic and gastric secretions, which
ultimately slow energy intake.129 Intracerebroventricular and
peripheral supplementation of the incretin GLP-1 potently
stimulates insulin release and decreases food intake, and
suppresses appetite, respectively.130 Therefore, anorexigenic
hormones may be effective strategies for managing obesity.
(−)-Hydroxycitric acid (HCA) is a major active ingredient of

Garcinia cambogia extract131 and has been identified as a valid
competitive inhibitor of extramitochondrial ATP-citrate lyase,
which transforms excess glucose into fat. HCA diverts fatty
acids and carbohydrates for conversion to hepatic glycogen by
suppressing ATP-citrate lyase, which is followed by satiety
signaling to the brain with curbed appetite.132 Reportedly, 300
μM HCA suppressed [3H]-5-HT uptake by 20% (p < 0.01) at
90 min, and enhanced neurotransmitter release, which controls
appetite in the rat brain cortex.133 To date, no significant
toxicity or adverse effects have been reported in experimental
animals and humans after G. cambogia treatment.134

Evodiamine and rutecarpine are alkaloidal components
isolated from the fruit of Evodia rutaecarpa. Compared to the
untreated control groups, intragastric administration of evodi-
amine (40 mg/kg) lowered food intake and weight gain (each p
< 0.01) by down-regulating orexigenic NPY (p < 0.05) and
AgRP (p < 0.01) mRNA expression and NPY peptide protein
(p < 0.01) expression in the ARC and enhancing leptin (p <
0.01).135 Similarly, treatment with rutecarpine (20 and 100 mg/
kg) inhibited appetite (43.5 and 65.2%, p < 0.05 and p < 0.01,
respectively) compared to that of the HF diet groups and
decreased the levels of blood cholesterol and nonfasting glucose
compared to those of the control groups. In addition,
rutecarpine (10 and 100 μM) suppressed the expression of
NPY and AgRP (each p < 0.001) mRNA in the ARC and some
related neuropeptides in mouse N29-4 hypothalamic cells.136

Agavins (10% in the diet) with a short degree of
polymerization (SDP) are from Agave angustifolia (AASDP)
and Agave potatorum (APSDP). The anorexigenic GLP-1 was
elevated after treatment with AASDP (40.93%, p < 0.05) and
APSDP (93%, p < 0.05).139 In addition, the orexigenic ghrelin
was decreased (AASDP and APSDP, 16 and 38%, respectively,
p < 0.05) compared to the SDP, indicating that agavins reduce
food intake (p < 0.05) and increase weight loss by 30% (p <
0.05).137,138

Cathinone is an amphetamine-like compound that sup-
presses appetite and is found in the young leaves of Catha edulis
(Khat).139 Compared to the control groups, the group that
chewed khat showed significantly enhanced plasma cathinone,
which is negatively correlated with hunger and positively
correlated with fullness and reduces subjective feelings of
hunger (p < 0.05).140 The abuse potential and sympathomi-
metic effects including increased blood pressure and heart rate
have made cathinone available by prescription only in certain
countries where it is legally restricted.
Capsaicin and capsiate141 derived from C. annuum also

curbed appetite. A meal with capsaicin increased GLP-1 (p <
0.05) and tended to diminish ghrelin (p = 0.07) compared to
the levels of the control groups, suggesting that capsaicin
reduces appetite.142 Additionally, 5-hydroxy-L-tryptophan (5-
HTP) from Griffonia simplicifolia,143 ginseng crude saponins

(protopanaxadiol and protopanaxatriol) from P. ginseng,144,145

gymnemic acids from Gymnema sylvestre,146,147 and the extracts
of P. vulgaris148 as well as Benincasa hispida149 regulate appetite
(Table 3) and may be promising sources of potential agents for
treating obesity.

■ MISCELLANEOUS

Several other mechanisms have been shown to modulate
obesity and its related complications. The microflora, which
grow mutually within the human host, are stably colonized and
contribute to controlling the physiological state by protecting
against invading pathogens and contributing to digestion and
absorption of nutrients in gut.150 Recently, an association
between intestinal microbiota and obesity has gained attention
because microbiota regulates the energy balance and metabolic
functions of the host.150−152 As such, gut flora are a promising
strategy for anti-obesity interventions.
Ganoderma lucidum, a medicinal mushroom with abundant

high molecular weight polysaccharides (>300 kDa), reduced
the ratio of Firmicutes/Bacteroidetes and endotoxin-bearing
Proteobacteria, which lowered metabolic endotoxemia without
injuring the integrity of the intestinal barrier, leading to
decreased body weight and plasma glucose levels.153 The
polyphenolic resveratrol reversed the increase in the
Firmicutes/Bacteroidetes ratios and Enterococcus faecalis counts
and improved Lactobacillus and Bifidobacterium growth. This
action ameliorated the intestinal microbiota dysbiosis, meta-
bolic disorders, and obesity by inhibiting the fasting-induced
adipogenic factor (Fiaf) signaling pathway and modulating the
composition of the intestinal microbes.154 Furthermore, MDG-
1, an ophiopogon polysaccharide, and Rhizoma Atractylodis
Macrocephalae regulate gut microbiota composition and
theoretically contribute to weight loss.155,156

In contrast, adipocyte apoptosis and fecal fat excretion
increased on supplementation with dietary calcium,157 which
may be promising for weight loss.158 The aqueous extract of
Poncirus trifoliata suppressed body weight gain likely by
accelerating the intestinal transit, increasing excretion, and
decreasing nutrient absorption without interfering with
pancreatic lipase.159 Polyphenols and polysaccharides in black
tea may reduce body, visceral fat, and adipocyte size by
elevating fecal fatty acid and improving serum biochemistry.160

Moreover, fecal excretion of nutrients can be increased by using
gallate tea catechins, which repressed gut nutrient absorption
and, therefore, may be relevant to body fat reduction and a
possible obesity treatment.161

■ CONCLUSION

Obesity is hazardous to human health and has far-reaching
consequences, such as T2D, CVD, dyslipidemia, cerebrovas-
cular incidents, and sleep apnea. Presently, only orlistat,
lorcaserin, and the fixed-dose combination of phentermine
and topiramate are available for treating obesity.162 However,
poor tolerability and low compliance owing to associated side
effects restrict their potential widespread use.163 Therefore, the
development of additional drugs from natural products is
currently arousing considerable interest because they most
likely have fewer side effects.
As described in this review, studies of numerous active

ingredients from natural products have been gradually
accumulating information from animal experiments to the
level of cell lines, proteins, and genes. These studies have
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shown the mechanisms of action of natural products and
contributed to promoting interest in the development of anti-
obesity agents. Some specific plants have been shown to act via
more than one mechanism or signal pathway, such as
P. grandiflorum, P. ginseng, C. annuum, and R. officinalis. The
active ingredients, capsiate and curcumin, are often incorpo-
rated as edible components for daily consumption in the diet.
Carnosic acid (5 μg/mL) from R. officinalis showed an anti-
adipogenic effect and decreased the viability of adipocytes by
8%.116,117 However, it is suggested to be neurotoxic because of
the presence of α-thujone,119 and, therefore, more caution
should be exercised when using such agents. Cathinone from
C. edulis significantly curbed the appetite (p < 0.05) in humans,
but its abuse potential and sympathomimetic effects (blood
pressure and heart rate elevation) have caused it to be available
only by prescription in certain countries where it is legally
restricted.
CTS and COS are active compounds, mainly isolated from

crab and shrimp shells, with few adverse effects, which were
studied for the treatment of obesity,97,105 hyperlipidemia,164,165

and hypercholesterolemia.166 In addition, over the past decade,
our research group has formulated CTS into micro-
spheres93,104,167 and nanoparticles164,166,168,169 because of
CTS’s insolubility. Additionally, CTS and COS target adipo-
genesis suppression by down-regulating the related adipo-
genesis genes, such as PPARγ.97 The synergistic effect of
treatment with CTS and capsaicin (CCMSs) would be
preferable to that of orlistat for anti-obesity treatment by up-
regulating UCP2 mRNA expression and increasing thermo-
genesis.106 This is because the CCMSs-treated groups showed a
better suppression of body weight gain, body mass index, and
body fat than the orlistat-treated group did. Furthermore,
studies investigating the possibility that CTS and COS act
through the leptin signal pathway to ameliorate leptin
resistance and improve obesity and its related complications
are currently underway.
However, the studies of active ingredients with anti-obesity

properties are fraught with numerous problems. First, the
mechanisms of action of most of these active ingredients are
undefined and, therefore, in-depth explorations should
continue. Moreover, the development of diverse active
ingredients, which are supposed to be incorporated into
pharmacological and toxicological research studies as well as
clinical studies of their efficacy, is challenging. However, the
reasonable and effective compatibility of these active ingre-
dients makes them preferable for use in treating the perplexity
of obesity. Last but not least, most of the plants we evaluated
have not been investigated clinically in humans, although they
are currently sold in the form of supplements. Only a few
compounds have moved into clinical trials, but none have
reached the final stage for ratification because the transferability
of most of the study data on dosage and active ingredients in
animal models to humans is questionable. In addition, for safety
reasons, low concentrations or doses of active compounds used
in the cell culture and animal models should be accorded
priority over high doses in determining the effective dosage.
Generally, more studies of natural products in healthy
volunteers are needed to determine the safety and efficacy of
these potential anti-obesity drugs.
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