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Abstract

Skeletal muscle is the largest organ determining whole-body insulin sensi-

tivity and metabolic homoeostasis. Adaptive changes of skeletal muscle in

response to physical activity include adjustments in the production and

secretion of muscle-derived bioactive factors, known as myokines, such as

myostatin, IL-4, IL-6, IL-7 and IL-15, myonectin, follistatin-like 1 or leu-

kaemia inhibitory factor. These myokines not only act locally in the mus-

cle in an autocrine/paracrine manner, but also are released to the

bloodstream as endocrine factors to regulate physiological processes in

other tissues. Irisin, derived from the cleavage of FNDC5 protein, consti-

tutes a myokine that induces myogenesis and fat browning (switch of

white adipocytes to brown fat-like cells) together with a concomitant

increase in energy expenditure. Besides being a target for irisin actions, the

adipose tissue also constitutes a production site of FNDC5. Interestingly,

irisin secretion from subcutaneous and visceral fat depots is decreased by

long-term exercise training and fasting, suggesting a discordant regulation

of FNDC5/irisin in skeletal muscle and adipose tissue. Accordingly, our

group has recently reported that the adipokine leptin differentially regu-

lates FNDC5/irisin expression in skeletal muscle and fat, confirming the

crosstalk between both tissues. Moreover, irisin secretion and function are

regulated by other myokines, such as follistatin or myostatin, as well as by

other adipokines, including fibroblast growth factor 21 and leptin. Taken

together, myokines have emerged as novel molecular mediators of fat

browning and their activity can be modulated by adipokines, confirming

the crosstalk between skeletal muscle and adipose tissue to regulate ther-

mogenesis and energy expenditure.
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Fat browning

In addition to its traditional functions (energy storage,

heat insulation and mechanical protection), adipose

tissue is a highly dynamic endocrine organ that

produces and releases a huge variety of bioactive

factors known as adipokines, which regulate many

physiological functions, including energy metabolism

(Rodr�ıguez et al. 2015b). Two types of adipose tissue

can be distinguished by morphology, function and
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location: white (WAT) and brown (BAT) adipose

tissues (Fr€uhbeck et al. 2009a, Cinti 2012). On the

one hand, white adipocytes are huge (25–200 lm),

round cells with a large unilocular lipid droplet, few

mitochondria in a thin cytoplasmic rim and a periph-

eral nucleus (Fr€uhbeck 2008, Cinti 2012). The main

functions of WAT are the storage of energy in the

form of triacylglycerols, lipolysis and secretion of adi-

pokines. WAT is located in the subcutaneous, abdomi-

nal, inguinal, retroperitoneal, gonadal and peri-cardial

regions (Cinti 2012). On the other hand, brown adi-

pocytes are smaller cells (15–60 lm) with polygonal

shape, multi-locular lipid droplets, a central nucleus

with large spherical mitochondria packed with lami-

nar cristae (Fig. 1) (Cinti 2012). Mitochondria in

brown adipocytes are marked by the expression of

uncoupling protein 1 (UCP1), which uncouples oxida-

tive phosphorylation from ATP synthesis, thereby

resulting in heat production (Cannon & Nedergaard

2004). In this regard, BAT plays an important role in

non-shivering and diet-induced thermogenesis through

UCP1 activation and it is particularly abundant in

hibernators and cold-acclimated rodents (Fr€uhbeck

et al. 2009a). In animals, BAT is located in inter-

scapular, subscapular, axillary, peri-subclavian and

peri-carotid regions (Giordano et al. 2014), although

in some species, such as lambs and cattles, the peri-

renal adipose tissue represents the main depot in the

newborns (Smith et al. 2004, Taga et al. 2012). In

humans, BAT is mainly found in the interscapular,

paravertebral and axillary regions in newborns, allow-

ing their adaptation to a cold environment by adap-

tive thermogenesis (Fr€uhbeck et al. 2009a).

Metabolically active BAT is also detectable by posi-

tron-emission tomography integrated with computed

tomography (18F-FDG PET/CT) particularly in the

neck and supraclavicular regions in adults (Neder-

gaard et al. 2007, van Marken Lichtenbelt et al.

2009, Saito et al. 2009, Virtanen et al. 2009, Vijgen

et al. 2010). BAT activity can be induced in response

to cold and sympathetic nervous system activation

and is inversely correlated with BMI and adiposity,

evidencing an inverse relationship with obesity (van

Marken Lichtenbelt et al. 2009, Vijgen et al. 2010).

Thus, BAT activation has been proposed as a poten-

tial therapy against obesity based on its energy-dissi-

pating properties (Fr€uhbeck et al. 2009a).

The existence of brown fat-like cells that emerge

within white fat pads, designated as brown-in-white

(‘brite’) or beige adipocytes, has been recently

reported (Petrovic et al. 2010). Beige adipocytes

resemble white fat cells in morphology and gene

expression patterns during basal states, but acquire an

intermediate brown-like appearance upon prolonged

cold exposure, b-adrenergic stimulation or peroxisome

proliferator-activated receptor (PPAR)-c agonist treat-

ment in a process called ‘fat browning’ (Fig. 1) (Petro-

vic et al. 2010, Wu et al. 2012). These clusters of

active beige adipocytes exhibit multi-locular lipid dro-

plets, high mitochondrial content and express thermo-

genic factors such as UCP1, PPAR-c coactivator 1-a
(PGC-1a), cell death-inducing DFFA-like effector a

(CIDEA), deiodinase type II (DIO2) and b3-adrenergic
receptor (ADRB3) (Wu et al. 2012). Moreover, beige

adipocytes also exhibit a unique gene signature char-

acterized by the expression of beige-specific markers,

such as TNF receptor superfamily member 9

(CD137), transmembrane protein 26 (TMEM26), T-

box-associated transcription factor (TBX1), homeobox

C8 and C9 (HOXC8 and HOXC9) or CITED1

(Petrovic et al. 2010, Walden et al. 2011, Sharp et al.

2012, Wu et al. 2012, Jespersen et al. 2013). Regard-

ing the location of beige adipose tissue in humans,

recent data demonstrate that human BAT might con-

sist of both classical brown and recruitable brite adi-

pocytes, important for future considerations on how

to induce BAT activity (Sharp et al. 2012, Jespersen

et al. 2013). Beige adipocytes can be induced by

chronic cold exposure, physical activity and lactation

as well as by obesity (Cinti 2012, Rodr�ıguez et al.

2015b). It remains controversial whether beige

adipocytes are formed de novo from precursor cells in

the adipose tissue (Wang et al. 2014, Gustafson et al.

2015) or arise from white-to-brown adipocyte transd-

ifferentiation (Cinti 2012) (Fig. 2). Fat browning

might be of particular medical relevance, because

animal data indicate that higher amounts of fat

browning are positively associated with resistance to

obesity and its comorbidities (Petrovic et al. 2010,

Wu et al. 2012).

Transcriptional regulation of brown and beige

adipogenesis

The developmental origin and transcriptional regula-

tion of classic brown adipocytes and beige fat cells is

different (Fig. 2), although both types of adipocytes

are UCP1-expressing cells with high mitochondrial

content and thermogenic capacity.

White and brown fat cells derive from the same

mesenchymal stem cells in the embryonic mesoderm

(Enerb€ack 2009). These mesenchymal stem cells can

be committed to either an adipogenic lineage (MYF5-

negative cells) or a myogenic lineage (MYF5-positive

cells), with MYF5 being a key myogenic regulatory

factor (Pownall et al. 2002, Seale et al. 2009). Brown

adipocytes and myocytes arise from MYF5-expressing

precursors in the paraxial mesoderm, showing a mus-

cle-like gene signature (Seale et al. 2007, 2008)

(Fig. 2a). Several members of the bone morphogenetic
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protein (BMP) family, which belongs to the TGF-b
superfamily, are involved in the commitment of

MYF5-positive cells into brown adipocyte precursors,

such as BMP4 (Qian et al. 2013), BMP7 (Tseng et al.

2008) and BMP8b (Whittle et al. 2012). The tran-

scription factor PR domain containing 16 (PRDM16)

Brown WAT Beige WAT

Figure 1 Representative histological sec-

tions of brown and beige adipose tissue

obtained from rodents. Haematoxylin–

eosin staining, magnification 1009.
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Figre 2 Developmental origin and transcriptional regulation of brown and beige adipocytes. (a) During early embryonic devel-

opment, brown adipocytes are derived from MYF5+ progenitor cells. Several members of bone morphogenetic proteins, such as

BMP4, BMP7 and BMP8a, are involved in the commitment of MYF5+ cells towards brown pre-adipocytes. PRDM16 stimulates

brown adipocyte differentiation through the binding to PPAR-c and PGC-1a, activating the transcription of brown-selective

genes (PGC-1a/b, UCP-1, ZIC1, ELOVL3, among others). (b) It remains controversial whether beige adipocytes derive from the

transdifferentiation of white adipocytes towards a brown-like phenotype (upper panel) or they are formed de novo from precur-

sor cells in the adipose tissue (lower panel). The deacetylation of PPAR-c by SIRT1 is required to stabilize and recruit the coacti-

vator PRDM16, which induces brown fat transcriptional programme through interactions with PGC-1a and the mediator

subunit MED1 beige adipocytes display thermogenic properties inducible by cold exposure, b-adrenergic stimulation or exercise,

and to show a unique gene signature (TMEM26, CD137 and TBX1). PPAR, proliferator-activated receptor.

© 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd, doi: 10.1111/apha.12686 3

Acta Physiol 2016 A Rodr�ıguez et al. · Adipokines and myokines: fat browning



constitutes the molecular switch deciding the fate of

the common progenitor cell to become either a skele-

tal myoblast or a brown adipocyte (Seale et al. 2007,

Fr€uhbeck et al. 2009b, Becerril et al. 2013). PRDM16

robustly induces the expression of UCP1 and other

brown fat-selective genes through binding to and stim-

ulating PGC-1a and PGC-1b (Seale et al. 2008,

Fr€uhbeck et al. 2009b, Becerril et al. 2013). In addi-

tion, different studies have identified the implication

of microRNAs in brown adipogenesis. Both miR-196a

(Mori et al. 2012) and miR-155 (Chen et al. 2013)

stimulate brown lineage commitment targeting

C/EBPb, while miR-133 directly interacts with and

reduces Prdm16 transcripts decreasing both brown

and beige adipocyte differentiation (Trajkovski et al.

2012).

On the other hand, beige adipocytes develop in

WAT in response to several stimuli (Harms & Seale

2013). Cold exposure and b-adrenergic system activa-

tion are the best-known mediators of fat browning

(Murano et al. 2009, Nguyen et al. 2011a), but

recently, the existence of novel endocrine BAT activa-

tors beyond the sympathetic tone has been reported

(Villarroya & Vidal-Puig 2013, Rodr�ıguez et al.

2015b), including fibroblast growth factor 21 (FGF21)

(Fisher et al. 2012), cardiac natriuretic peptides

(Bordicchia et al. 2012), follistatin (Braga et al.

2014), bile acids, BMP8B (Whittle et al. 2012), the

intermediate metabolites lactate and ketone body b-
hidroxybutyrate (Carri�ere et al. 2014) or leptin

(Rodr�ıguez et al. 2015a). In addition, fat browning

can be triggered by pharmacological agents (Bonet

et al. 2013), such as agonists of PPAR-c (Petrovic

et al. 2010), b3-adrenergic receptor (Lee et al. 2012)

or thyroid hormone receptor (Lin et al. 2015) as well

as with synthetic inhibitors of histone deacetylases

(Galmozzi et al. 2013), among others. The process of

beige adipogenesis is regulated by several transcrip-

tional factors and coregulators, such as PPAR-c,
PRDM16 or sirtuin 1 (SIRT1), generally functioning

in a combinatorial manner (Fig. 2b). The activation of

PPAR-c, the absolute master regulator of adipocyte

differentiation, increases UCP1 expression in different

WAT depots, particularly in the inguinal depot (Petro-

vic et al. 2010). PGC-1a binds the heterodimer

formed by PPAR-c and retinoid X receptor alpha

(RXR-a) and promotes the expression of thermogenic

UCP1 (Rosen et al. 2000). The NAD+-dependent type

III deacetylase SIRT1 also activates PPAR-c, PPAR-a
and PGC-1a in adipocytes to contribute to fat brown-

ing (Qiang et al. 2012, Wang et al. 2013, Fu et al.

2014). Deacetylation of PPARc is required to stabilize

and recruit the coactivator PRDM16, which downreg-

ulates the expression of white-specific genes and

induces the brown fat transcriptional programme

through interactions with the mediator subunit MED1

(Becerril et al. 2012, Qiang et al. 2012, Harms et al.

2015, Iida et al. 2015), T-box 15 (TBX15) (Gburcik

et al. 2012) or Zfp516 (Dempersmier et al. 2015),

playing an essential role in differentiation and activa-

tion of the beige adipocytes.

In the present review, we will focus on the role of

physical activity in fat browning as well as the cross-

talk of adipokines and myokines in this process.

The skeletal muscle as an endocrine organ:

impact of myokines on metabolic

homoeostasis

The impact of physical activity and exercise on health

is well known (Handschin & Spiegelman 2008, Neu-

fer et al. 2015). A sedentary lifestyle and even short

periods of physical inactivity are associated with a

decrease in insulin sensitivity, impaired lipid metabo-

lism, loss of muscle mass and accumulation of visceral

fat. By contrast, exercise training results in adaptive

structural and metabolic changes in skeletal muscle,

including a change in the type of muscle fibres, mito-

chondrial biogenesis and angiogenesis. Moreover, reg-

ular exercise promotes multiple beneficial effects on

health, which are mediated in part by the activation

of the PGC-1a transcription factor (Handschin &

Spiegelman 2008).

Physical activity protects against all causes of mor-

tality (Blair et al. 1995), and the identification of the

skeletal muscle as an endocrine organ has provided a

mechanistic explanation for the beneficial effects of

the regular practice of exercise on the prevention of

metabolic diseases (Pedersen & Febbraio 2012). Skele-

tal muscle is the largest organ influencing whole-body

insulin sensitivity and metabolic homoeostasis. Since

the identification of myostatin in 1997 (McPherron

et al. 1997) and interleukin-6 (IL-6) in 2000 (Steens-

berg et al. 2000) as muscle-secreted factors, skeletal

muscle has emerged as an extremely active endocrine

organ that secretes a huge variety of cytokines,

chemokines, growth factors, hormones and vasoactive

factors, collectively termed myokines, that have been

proposed as the mediators of the beneficial actions of

physical activity (Table 1) (Pedersen & Febbraio

2012). IL-6 is recognized as the prototype myokine

exerting autocrine, paracrine and endocrine functions

(Pedersen 2009), but during the last decade, several

proteomics studies focusing on the secretome of skele-

tal muscle have revealed a large number of myokines

with pleiotropic effects such as myostatin, IL-6, IL-7

and IL-15, FGF-21, myonectin, follistatin, leukaemia

inhibitor factor or the more recently identified,

musclin, irisin, b-aminoisobutyric acid (BAIBA) or

meteorin-like (Norheim et al. 2011, Pedersen &
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Table 1 Proteins expressed and/or secreted by skeletal muscle with endocrine effects

Protein Main metabolic effect References

ANGPTL4 Inhibitor of the lipoprotein lipase enzyme increased by acute exercise Catoire et al. (2014a)

Apelin Peptide induced by endurance training that is involved in the control of blood

pressure and cardiac contractility

Besse-Patin et al. (2014)

BAIBA Myokine that constitutes the natural catabolite of thymine involved in hepatic

FFA b-oxidation and fat browning

Roberts et al. (2014)

BDNF Trophic factor for innervating motor neurones that also inhibits myogenic

differentiation

Mousavi & Jasmin (2006)

Calprotectin DAMP released from muscle during exercise involved in extravasation of

leucocytes and with antimicrobial activity

Mortensen et al. (2008)

CX3CL1 Chemokine involved in leucocyte adhesion and in macrophage-directed

rescuing of skeletal muscle cells from apoptosis

Catoire et al. (2014b)

Decorin Myokine released by contracting myotubes that promotes muscle growth by

inhibiting myostatin and atrophy markers as well as by increasing MyoD

Kanzleiter et al. (2014)

DPP4 Cell surface type II membrane glycoprotein that cleaves N-terminal dipeptides

of post-prandial activated incretins GLP1 and GIP

Raschke et al. (2013a)

FGF21 Factor involved in the regulation of systemic glucose, lipid metabolism and

browning

Izumiya et al. (2008),

Chavez et al. (2009)

FNDC5/Irisin Myokine with myogenic properties that stimulates browning of white adipose

tissue

Bostr€om et al. (2012),

Huh et al. (2014),

Rodr�ıguez et al. (2015a)

FSTL1 Glycoprotein of the SPARC family that promotes endothelial cell function and

revascularization in ischaemic tissues

Ouchi et al. (2008)

IGF-1 Growth factor involved in skeletal muscle hypertrophy and regeneration Pedersen & Febbraio (2012)

IGF-BP5 Binding protein that inhibits myoblast differentiation by sequestering IGF-1 James et al. (1993)

IL-4 Interleukin that enhances muscle regeneration by stimulating the fusion of

myoblasts with myotubes

Horsley et al. (2003)

IL-6 Prototype myokine that increases muscle hypertrophy and whole-body fat

oxidation as well as promotes insulin resistance

Bartoccioni et al. (1994),

van Hall et al. (2003),

Febbraio et al. (2004)

IL-7 Interleukin involved in muscle hypertrophy that acts on satellite cells and is

required for T-cell and B-cell development

Haugen et al. (2010)

IL-8 Interleukin acting as modulator of inflammation and proangiogenic factor Pedersen & Febbraio (2012),

Amir Levy et al. (2015)

IL-15 Interleukin that promotes muscle hypertrophy and decreases lipid deposition

in pre-adipocytes and white adipose tissue mass

Carbo et al. (2001)

INSL6 Myokine markedly induced by muscle injury that promotes muscle progenitor

cell proliferation and survival

Zeng et al. (2010)

LIF Contraction-induced cytokine that induces satellite cell proliferation for proper

muscle hypertrophy and regeneration

Broholm et al. (2008),

Broholm et al. (2011)

MCP-1 Chemokine involved in attracting macrophages and other immune cells for

repair and growth of skeletal muscle

Catoire et al. (2014b)

Meteorin-like Myokine that activates eosinophils and macrophages and thermogenic

programme in the adipose tissue

Rao et al. (2014)

Musclin Vasoconstrictor myokine that also attenuates insulin-stimulated glucose uptake

and glycogen synthesis in skeletal muscle

Nishizawa et al. (2004),

Lin et al. (2014)

Myonectin Nutrient-responsive myokine that enhances glucose uptake and stimulates fatty

acid oxidation

Seldin et al. (2012)

Myostatin Hormone involved in the inhibition of muscle hypertrophy, in the maintenance

of metabolic homoeostasis and in modulation of adipose tissue function and

mass

McPherron et al. (1997),

Feldman et al. (2006)

PAI-1 Serin protease inhibitor (serpin) that acts as an antifibrinolytic factor Norheim et al. (2011)

PEDF Glycoprotein of the non-inhibitory serpin group with anti-angiogenic and

neurotrophic properties

Steele et al. (1993),

Raschke et al. (2013a)

(continued)
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Febbraio 2012). Besides the well-known interleukins

such as IL-4, IL-6, IL-7 and IL-15, further interleukins

are secreted by the skeletal mucle cells, such as IL-1a,
IL-3, IL-16, IL-22, IL-28a, IL-29 and IL-31 (Raschke

et al. 2013a).

Regarding the biological function of myokines

(Table 1), skeletal muscle has inbuilt control mecha-

nisms to prevent overgrowth as well as muscle atro-

phy with myokines acting as positive and negative

inducers of skeletal muscle growth. In this regard, IL-

4, IL-6, IL-7, IL-15 and leukaemia inhibitory factor

(LIF) promote muscle hypertrophy, while myostatin

inhibits muscle hypertrophy (McPherron et al. 1997).

The contracting skeletal muscle secretes enhanced

levels of myokines in response to exercise, which have

beneficial endocrine effects, playing a crucial role in

the dialogue between skeletal muscle and other meta-

bolic tissues, such as adipose tissue, pancreas, intestine

or liver (Raschke & Eckel 2013). Brain-derived neu-

rotrophic factor (BDNF) and IL-6 are involved in

AMPK-mediated free fatty acid (FFA) oxidation, and

IL-6 also stimulates lipolysis in the visceral fat depot

and increases insulin secretion by inducing the expres-

sion of glucagon-like peptide 1 (GLP-1) by intestinal

L cells (Pedersen & Febbraio 2012). IGF-1, FGF-2

and TGF-b are involved in bone formation, and follis-

tatin-related protein 1 improves endothelial function

and revascularization of ischaemic blood vessels. Sev-

eral myokines, such as irisin, BAIBA and meteorin-

like, have a role in browning of WAT (Bostr€om et al.

2012, Ruas et al. 2012, Roberts et al. 2014), which is

extensively explained in the next section.

Impact of myokines on fat browning

Regular physical activity and exercise training induce

profound adaptations in WAT, such as an increase

in mitochondrial activity, decrease in adipocyte cell

size and lipid content or regulation of adipokines,

that mediate in part whole-body metabolic health

(Stanford et al. 2015a). In rodent models, exercise

training also increases the expression of Ucp1,

Prdm16 and other markers of beige adipocytes in

both visceral and subcutaneous adipose tissue

(Bostr€om et al. 2012, Stanford et al. 2015b),

although these effects are more pronounced in the

subcutaneous fat depot. The underlying mechanisms

whereby exercise promotes fat browning have been

focus of several investigations. It has been proposed

that the exercise-induced sympathoactivation con-

tributes to fat browning (Ghorbani et al. 1997, Ned-

ergaard & Cannon 2014). Nonetheless, the discovery

of the contracting muscle as an endocrine organ has

revealed that IL-6 as well as novel myokines also

act on adipocytes as positive (IL-6, irisin, BAIBA

and meteorin-like) and negative (myostatin) regula-

tors of fat browning (Bostr€om et al. 2012, Ruas

et al. 2012, Shan et al. 2013, Knudsen et al. 2014,

Roberts et al. 2014) (Fig. 3). The secretion of these

myokines in response to exercise and their impact

on fat browning provide a novel mechanism to

explain the benefits of physical activity on weight

loss and metabolic disease prevention. Interestingly,

it has been recently reported that lactate, a metabo-

lite released by skeletal muscle during and after

exercise, induces a robust increase of the thermo-

genic gene expression (Ucp1, Cidea, Fgf21 and

Hoxc9) in mouse and human white adipocytes

through PPAR-c activation (Carri�ere et al. 2014).

Thus, the release of several myokines and lactate

during exercise could contribute to the browning

remodelling of adipose tissue. Until now, human

studies are scarce and whether physical activity per

se recruits brown and beige adipocytes (Dinas et al.

Table 1 (continued)

Protein Main metabolic effect References

Somatotropin Pleiotropic peptide hormone with an important role in the regulation of

metabolism via stimulation of lipid mobilization and oxidation promotes

anabolic effects on skeletal muscle

Raschke et al. (2013a)

SPARC Matricellular protein involved in differentiation, regeneration and proliferation Jorgensen et al. (2009)

VEGF Factor that is the potential mitogen of endothelial cells and is involved in

angiogenesis in response to exercise.

Hoffner et al. (2003)

ANGPTL4, angiopoietin-like 4; BAIBA, b-aminoisobutyric acid; BDNF, brain-derived neurotrophic factor; BMP-7, bone mor-

phogenetic protein; CX3CL1, chemokine (C-X3-C motif) ligand 1 (also referred to as fractalkine); DAMP, damage activated

molecular pattern protein; DPP-4, dipeptidyl peptidase 4; FGF-21, fibroblast growth factor-21; FSTL1, follistatin-like protein 1;

IGF-1, insulin growth factor 1; IGF-BP5, insulin-like growth factor-binding protein-5; IL, interleukin; INSL6, insulin-like 6; LIF,

leukaemic inhibitory factor; MCP-1, monocyte chemoattractant protein 1; PAI-1, plasminogen activator inhibitor-1; PEDF, pig-

ment epithelium-derived factor; SPARC, secreted protein acidic and rich in cysteine; VEGF, vascular endothelial growth factor;

FFA, free fatty acid.
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2015) or not (Vosselman et al. 2015) remains con-

troversial. Therefore, abusive extrapolation of rodent

data to humans should be avoided and it will be

important to disentangle the true impact of exercise

training on fat browning in humans to gain further

insight into metabolic health.

IL-6

The prototype myokine IL-6 has been proposed as an

important factor in the crosstalk between skeletal

muscle and adipose tissue. IL-6 increases up to 100-

fold in the circulation during exercise due to the

Exercise/training

White adipocyte Beige adipocyte

Browning

IL-6 (+)
Irisin (+)

Meteorin-like (+)
BAIBA (+)
FGF21 (+)

Myostatin (–)
Leptin (–)
FGF21 (+)
Irisin (+)

Leptin (+)
Irisin (+)

Myogenesis and myokine release

Figure 3 Crosstalk between adipokines and myokines in fat browning after exercise. Exercise training induces muscle growth

as well as the production and secretion of myokines, which are in part responsible for the beneficial metabolic effects of physical

activity on other organs, including the adipose tissue. Several myokines regulate the differentiation of energy-accumulating white

adipocytes into energy-dissipating beige adipocytes, a process called fat browning. In this regard, the myokines IL-6, irisin,

BAIBA and meteorin-like positively regulate fat browning, while the myostatic factor myostatin represses this biological process.

On the other hand, the adipose tissue secretes the adipokine leptin and FGF-21 as feedback signal, closing the adipocyte–

myocyte loop. Leptin stimulates myogenesis and induces the expression and release of irisin in skeletal muscle, but reduces its

browning effect in subcutaneous adipocytes. FGF-21 acts in an autocrine/paracrine manner enhancing irisin-induced beige adipo-

genesis. Finally, irisin is not only a myokine, but also an adipokine with myogenic and browning effects that induces a positive

self-regulation in both skeletal muscle and adipose tissue.
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increased release of IL-6 by type I and type II con-

tracting muscle fibres (Pedersen & Febbraio 2008).

Circulating IL-6 acts as a potent regulator of fat meta-

bolism in humans, increasing lipolysis and FFA oxida-

tion in adipocytes (van Hall et al. 2003). Interestingly,

IL-6 also regulates exercise training-induced UCP1

expression in murine inguinal WAT (Knudsen et al.

2014), suggesting its participation in fat browning. To

our current knowledge, no studies have reported this

effect in humans, so further studies are needed to

analyse the IL-6-induced beige adipocyte differentia-

tion and/or activation in response to exercise training.

Irisin

The fibronectin type III domain containing 5

(FNDC5) gene encodes a protein in the skeletal mus-

cle that is proteolitically cleaved to form the active

form, irisin (Bostr€om et al. 2012). Exercise and/or

PGC-1a induce FNDC5 expression and irisin secretion

from skeletal muscle in rodents and humans (Bostr€om

et al. 2012, Huh et al. 2012, Gouni-

Berthold et al. 2013, Hecksteden et al. 2013, Mor-

eno-Navarrete et al. 2013, Roberts et al. 2013, Shan

et al. 2013, Wrann et al. 2013, Kurdiova et al. 2014,

Norheim et al. 2014). In this regard, a direct action of

irisin on skeletal muscle accretion by increasing myo-

genic molecules, while decreasing myostatic factors as

well as atrophy-related genes, has been recently pro-

posed by our group (Rodr�ıguez et al. 2015a) and

others (Huh et al. 2014). The stimulation of murine

C2C12 myocytes with irisin induces their proliferative

response, upregulates myogenin, which is essential for

the terminal differentiation of committed myoblast,

and downregulates the myostatic factors myostatin

and dystrophin as well as the atrophy-related atrogin-

1/MAFBx1 and MuRF1 (Rodr�ıguez et al. 2015a).

Moreover, irisin treatment also promotes mitochon-

drial biogenesis with the subsequent upregulation of

mitochondrial genes (Tfam, Nrf1 and Ucp3) in

C2C12 myocytes (Vaughan et al. 2014). The expres-

sion of skeletal muscle FNDC5 is positively regulated

by leptin (Rodr�ıguez et al. 2015a), follistatin (Vamvini

et al. 2013) and irisin itself (Rodr�ıguez et al. 2015a),

while being negatively regulated by myostatin (Shan

et al. 2013), TGF-b (Tiano et al. 2015) and palmitate

(Kurdiova et al. 2014) (Fig. 4). Furthermore, several

pharmacological treatments, such as lipid-lowering

statins (Gouni-Berthold et al. 2013) or antidiabetic

metformin (Li et al. 2015a), reportedly regulate the

transcription of FNDC5.

Large controversy exists on the physiological role of

irisin in humans with several studies showing that

exercise and high-intensity training protocols are effec-

tive in raising circulating irisin in humans (Bostr€om

et al. 2012, Huh et al. 2012, Norheim et al. 2014,

Jedrychowski et al. 2015), while others were not able

to find any association (Timmons et al. 2012, Heckst-

eden et al. 2013, Hofmann et al. 2014, Kurdiova

et al. 2014), which highlights the doubts on the

robustness of the exercise data. Furthermore, recent

reports even argued against the existence of circulating

irisin (Erickson 2013, Raschke et al. 2013b, Albrecht

et al. 2015), as the human FNDC5 gene harbours a

mutation in the conserved ATG codon to ATA that

might represent a null mutation preventing irisin tran-

scription (Raschke et al. 2013b). Most of the studies

used for circulating irisin detection relied on commer-

cial antibodies and ELISA assays that revealed promi-

nent cross-reactivity with non-specific proteins in

human and animal sera (Albrecht et al. 2015). In this

regard, the detection and quantitation of circulating

irisin by quantitative mass spectrometry with heavy

stable isotopes as standards have so far settled the

existence of human irisin in plasma and its regulation

by exercise (Jedrychowski et al. 2015).

Exogenous administration of irisin induces the

browning of subcutaneous fat and thermogenesis in

mice, thereby promoting oxygen consumption

(Bostr€om et al. 2012). The expression of fat browning-

specific genes (Ucp1, Pgc1a, Tmem26, Ebf3, Elovl3,

Cidea and Cox7a) is mediated through the activation of

p38 MAPK and ERK1/2 pathways (Zhang et al. 2014).

In humans, a positive correlation of circulating irisin

and energy expenditure has been also found (Swick

et al. 2013, Lee et al. 2014). Apparently, it seems para-

doxical that exercise increases the secretion of a ther-

mogenic hormone that would burn the fat stores (Kelly

2012), but it has been hypothesized that this mecha-

nism has evolved from shivering-related muscle con-

traction to increase thermogenesis through BAT

expansion (Lee et al. 2014). In this regard, irisin secre-

tion is induced in proportion to the shivering intensity

after cold exposure, in a magnitude similar to exercise-

stimulated secretion (Lee et al. 2014). Nonetheless,

other authors have found similar circulating irisin levels

between individuals with active BAT detected by
18FDG-PET/CT and those without BAT (Choi et al.

2014, Norheim et al. 2014), so further studies evaluat-

ing the role of irisin on human fat browning are needed.

The adipose tissue not only constitutes a target for iri-

sin, but also expressed the FNDC5 gene and secretes

irisin, but to a lesser extent than the skeletal muscle

(Moreno-Navarrete et al. 2013, Roca-Rivada et al.

2013). An increased irisin secretion from subcutaneous

and visceral adipose tissues is observed after only

1 week of exercise in rats (Roca-Rivada et al. 2013).

Moreover, the gene expression levels of Fndc5 in the

adipose tissue obtained from rodents is also positively

regulated by irisin itself (Rodr�ıguez et al. 2015a), while
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negatively regulated by myostatin (Shan et al. 2013)

and leptin (Rodr�ıguez et al. 2015a) (Fig. 3).

Myostatin

Myostatin [also known as growth differentiation fac-

tor 8 (GDF-8)] was the first secreted factor to fulfil

the criteria of a myokine (McPherron et al. 1997).

Myostatin is a member of the TGF-b superfamily that

is predominantly expressed and secreted by muscle

fibres (McPherron et al. 1997). On binding to its

receptor, the transmembrane activin receptor type II

B, myostatin inhibits muscle growth and the suppres-

sion of this pathway stimulates muscle growth (Lee &

McPherron 2001, Schuelke et al. 2004, Relizani et al.

2014). Moreover, myostatin also inhibits the prolifera-

tion and differentiation of myoblast and satellite cells

(Thomas et al. 2000, Joulia et al. 2003, McCroskery

et al. 2003) and induces fibre-type switches (Mouisel

et al. 2014). Myostatin gene deficiency results in an

extensive skeletal muscle hypertrophy in mice

(McPherron et al. 1997) and humans (Schuelke et al.

2004) as a result from a combination of muscle fibre

hypertrophy and hyperplasia. Conversely, systemic

overexpression of the myostatin gene (MSTN) leads to

cachexia, which is characterized by extensive muscle

loss (Zimmers et al. 2002). For this reason, myostatin

blockade (e.g. antibodies, soluble decoy activin recep-

tor type II B or propeptides) has been proposed as a

therapeutic target for the treatment of muscular dys-

trophies, sarcopenia, cachexia and other muscle-wast-

ing conditions (Lebrasseur 2012).

The loss of functional myostatin not only increases

muscle mass, but also decreases body fat accumulation.

Myostatin gene deficiency as well as its inactivation

using soluble decoy activin receptor type II B protects

against diet-induced obesity through the induction of

genes involved in lipolysis and mitochondrial fatty acid

oxidation in adipose tissue and liver (Zhang et al.

2012). Accordingly, the absence of myostatin in genetic

models of obesity, such as leptin-deficient ob/ob or

agouti lethal yellow (Ay/a) mice, partially suppresses

both fat accumulation and the development of hyper-

glycaemia (McPherron & Lee 2002). In addition, mice

carrying a targeted disruption of the myostatin gene

(Mstn�/�) drive fat browning through the upregulation

of brown (Pgc1a, Ucp1, Cidea and Dio2)- and beige

(Tmem26 and Cd137)-specific genes in the white adi-

pose tissue (Zhang et al. 2012, Shan et al. 2013). The

fat browning induced in the absence of myostatin is

non-cell autonomous, as it is triggered by the activation

of the AMPK enzyme and the subsequent induction of

PGC-1a and FNDC5 (Shan et al. 2013). These findings

highlight the relevance of the inactivation of myostatin

as potential anti-obesity drugs through the increase in

fat browning-induced energy expenditure.

Follistatin binds and inhibits several TGF-b family

members, including myostatin and activin A (Hill et al.

2002, Amthor et al. 2004, Bostr€om & Fern�andez-Real

2014). Testosterone induces myogenic differentiation

of multi-potent stem cells by the activation of follistatin

through the interaction of the androgen receptor with

T-cell factor-4 (TCF-4), resulting in the inhibition of

the TGF-b signalling pathway (Fig. 4) (Singh et al.

2009). Interestingly, irisin levels are positively corre-

lated with those of follistatin, which leads to muscle

growth (Vamvini et al. 2013, Bostr€om & Fern�andez-

Real 2014). Accordingly, irisin directly reduces the

mRNA expression of myostatin in C2C12 myocytes,

suggesting a negative feedback of the inhibitory signals

Myostatin

Testosterone

Follistatin

Follistatin

Irisin

PGC-1α

AMPK

Leptin

OB-Rb

iNOS

TCF4

AR
ActRIIB

FNDC5

TGF-β

Tb-R

SMAD3

Muscle fibre

Figure 4 Factors involved in the myogenic action of irisin.
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in order to promote muscle accretion (Rodr�ıguez et al.

2015a). Follistatin also acts on the adipose tissue-indu-

cing genes involved in adipogenesis and fat browning

(Pgc1a, Ucp1, Prdm16 and Fabp4) (Braga et al. 2014).

Taken together, myostatin activity can be antagonized

by follistatin, which promotes myogenesis and fat

browning.

b-Aminoisobutyric acid

Roberts and colleagues recently identified BAIBA, a

natural catabolite of thymine, in the screening of

metabolites that were released to the culture media of

myocytes overexpressing the PGC-1a transcription fac-

tor (Roberts et al. 2014). BAIBA exerts an autocrine/

paracrine action on skeletal muscle fibres by: (i)

increasing mitochondrial FFA oxidation, (ii) attenuat-

ing the impairment of IRS-1/Akt-mediated insulin sig-

nalling and (iii) reducing the inflammation in vivo

through AMPK-PPARd-dependent mechanisms

(Roberts et al. 2014, Jung et al. 2015). The endocrine

effects of BAIBA involve the reduction fat accumulation

in mice through the stimulation of mitochondrial FFA

oxidation and reduction of hepatic de novo lipogenesis

via the activation of PPAR-a in the liver (Maisonneuve

et al. 2004, Begriche et al. 2008, Roberts et al. 2014).

In this regard, the improvement of non-alcoholic fatty

liver disease (NAFLD) in obese children after treatment

with the probiotic VSL#3 is associated with a decrease

in urinary BAIBA levels (Miccheli et al. 2015). More-

over, the peripheral actions of BAIBA also include fat

browning as BAIBA treatment increases the expression

of thermogenic genes (Pgc1a, Ucp1, Cidea and CytC)

in murine WAT (Roberts et al. 2014). In humans, cir-

culating BAIBA levels are increased during exercise

training and are inversely correlated with car-

diometabolic risk factors (Roberts et al. 2014).

Together, the identification of BAIBA as an exercise-

triggered signal provides further information for under-

standing the protective role of exercise against the

development of metabolic diseases (Kammoun & Feb-

braio 2014, Roberts et al. 2014).

Meteorin-like

A splice form of the gene encoding PGC-1a, termed

PGC-1a 4, is induced by resistance training and pro-

motes muscle hypertrophy and strength in mice and

humans (Ruas et al. 2012). The muscle-specific PGC-1a
4 overexpression in mice stimulates the expression and

secretion of a hormone called meteorin-like (also known

as subfatin) (Li et al. 2014, Rao et al. 2014). Rao and

colleagues reported that meteorin-like is induced by

exercise in the skeletal muscle with the increase in circu-

lating meteorin-like inducing an upregulation of genes

involved in brown/beige fat thermogenic and mitochon-

drial programme (Pgc1a, Ucp1, Dio2 and Erra) as well

as anti-inflammatory cytokines IL-10 and TGF-b in

WAT (Rao et al. 2014). This activation of fat browning

is not the consequence of a direct effect of meteorin-like

on adipocytes. Meteorin-like activates the secretion of

IL-4 and IL-13 from the eosinophils embedded in WAT

and promotes the activation of adipose tissue macro-

phages as well as the thermogenic programme (Rao

et al. 2014). Regarding the potential role of meteorin-

like in the regulation of inflammation, Ushach and col-

leagues found that meteorin-like is produced by alterna-

tively activated M2 macrophages and M-CSF cultured

bone marrow macrophages (M2-like macrophages),

with its expression being increased in skin disease such

as psoriasis, actinic keratosis or atopic dermatitis as well

as in rheumatoid arthritis (Ushach et al. 2015). How-

ever, other authors did not observe differences in the

gene expression of anti-inflammatory factors (IL-4, IL-

10 and IL-13), thermogenic genes (Pgc1a, Ucp1, Dio2

and Erra) as well as eosinophils and anti-inflammatory

M2 macrophages markers (Siglec F, Ccr3, Mrc1,

Clec10a and Retnla) in both adipocyte-specific mete-

orin-like (Mtrnl)-knockout mice and transgenic mice

with an adipocyte-specific overexpression of the Metrnl

gene (Li et al. 2015b). Thus, further studies are required

to elucidate the real contribution of meteorin-like on fat

browning and immunity.

Meteorin-like is not only a myokine, but also an

adipokine (Li et al. 2014, Rao et al. 2014). The

expression of meteorin-like is downregulated in white

adipose tissue during caloric restriction, while being

dramatically upregulated in the adipose tissue during

adipocyte differentiation and diet-induced obesity in

rodents (Li et al. 2014). Meteorin-like induces adipo-

cyte differentiation and improves insulin sensitivity in

adipocytes through PPAR-c-dependent mechanisms (Li

et al. 2015b). Adipocyte-specific Mtrnl knockout exac-

erbates insulin resistance induced by high-fat diet,

while adipocyte-specific transgenic overexpression of

Metrnl prevents insulin resistance induced by diet-

induced obesity or leptin deletion.

Crosstalk between adipokines and myokines

in fat browning

Exercise increases PGC-1a in the skeletal muscle,

which, in turn, activates the expression and secretion of

irisin, BAIBA and meteorin-like in myocytes. These

myokines are released to the bloodstream and induce

fat browning and energy expenditure. The next ques-

tion is whether the adipose tissue secretes factors acting

as positive/negative feedback signals, closing the

myocyte–adipocyte circle. Among the plentiful factors

released by the adipose tissue (Rodr�ıguez et al. 2015b),
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interestingly, two important adipokines, FGF21 and

leptin, act in an autocrine/paracrine manner regulating

the browning process induced by irisin. The crosstalk

between the adipose tissue and skeletal muscle is of con-

siderable interest, since a dysregulation in the secretion

and production of adipokines and myokines might con-

tribute to the development of excess adiposity, favour-

ing the onset of whole-body insulin resistance.

Fibroblast growth factor-21

FGF21, an atypical member of the FGF superfamily, is

involved in the control of glucose homoeostasis (Khari-

tonenkov et al. 2005), insulin sensitivity (Wente et al.

2006), ketogenesis (Badman et al. 2007) as well as

thermogenesis and fat browning in BAT and WAT

(Hondares et al. 2011, Fisher et al. 2012). The human

FGF21 gene encodes a 209 amino acid protein that

contains a 28 amino acid signal sequence and a 181

amino acid secreted polypeptide (Nishimura et al.

2000). FGF21 is abundantly expressed in the liver, and

to a lower extent in the skeletal muscle, adipose tissue,

pancreas and thymus, among others (Nishimura et al.

2000, Izumiya et al. 2008, Muise et al. 2008, Hon-

dares et al. 2011). The cellular response to FGF21 is

activated on its binding to FGF receptor 1c (FGFR1c)

with the coreceptor b-Klotho, forming the ternary com-

plex FGF21–FGFR1c–b-Klotho (Adams et al. 2012,

Gallego-Escuredo et al. 2015, Giralt et al. 2015). Both

BAT and WAT express high levels of the critical core-

ceptor b-Klotho and are sensitive to exogenous FGF21

stimulation (Hondares et al. 2011, Fisher et al. 2012).

In this sense, FGF21 stimulates the browning of WAT

and BAT through central (Douris et al. 2015) and local

(Fisher et al. 2012) mechanisms to provide a robust

defence against hypothermia. Adipocyte-derived

FGF21 acts in an autocrine/paracrine manner to

increase the expression of UCP1 and other thermogenic

genes in response to cold exposure and b-adrenergic
stimulation in both fat depots (Fig. 2) (Chartoumpekis

et al. 2011, Hondares et al. 2011, Fisher et al. 2012,

Lee et al. 2014). Accordingly, Fgf21-knockout mice

shows larger BAT depots containing larger lipid dro-

plets and display an impaired ability to adapt to

chronic cold exposure, which diminished browning of

WAT (Fisher et al. 2012). FGF21 secretion is induced

by cold exposure and stimulated both basal and irisin-

induced expression of beige genes in human neck adi-

pocytes (Lee et al. 2014), confirming its role as an

endocrine activator of BAT function also in humans.

Interestingly, human obesity is associated with

increased circulating FGF21 levels and with an abnor-

mal decrease in the expression of b-Klotho coreceptor

in WAT, suggesting a reduced sensitivity to FGF21 in

the obese state (Gallego-Escuredo et al. 2015).

Skeletal muscle is also a source of FGF21 with its

expression being regulated in a PI3K/Akt signalling

pathway-dependent manner (Izumiya et al. 2008). A

recent study showed that FGF21 is also induced by the

integrated stress response in UCP1 transgenic mice

expressing this uncoupling protein in skeletal muscle

(Keipert et al. 2014). Myocytic FGF21 is also the major

insulin-responsive myokine with its expression being

increased in young healthy men during a hyperinsuli-

naemic–euglycaemic clamp (Hojman et al. 2009, Kim

et al. 2013). Interestingly, palmitate suppresses the

skeletal muscle transcription of FGF21 and other

myokines (CTRP15 and irisin), which might contribute

to the palmitate-induced insulin resistance in myotubes

(Yang et al. 2013). Plasma FGF21 levels are increased

in insulin-resistant states and correlated with hepatic

and muscle insulin resistance (Chavez et al. 2009), sug-

gesting a role of this hepatokine/adipokine/myokine in

the pathogenesis of type 2 diabetes.

Leptin

Leptin is a 16-kDa peptide hormone encoded by theOB

gene, which was discovered in 1994 (Zhang et al. 1994,

Friedman&Mantzoros 2015). Leptin constitutes a mar-

ker of the amount of energy stores in the body, as circu-

lating leptin is proportional to the amount of body fat,

the main production site of the hormone (Maffei et al.

1995). Leptin decreases body weight by reducing food

intake and by increasing energy expenditure and lipoly-

sis to maintain energy balance (Fr€uhbeck et al. 2014).

After crossing the blood–brain barrier, leptin activates

several hypothalamic nuclei involved in the regulation

of feeding behaviour and energy balance including the

arcuate nucleus (ARC), ventromedial hypothalamus

(VMN) and dorsomedial hypothalamus (DMN)

(Harvey & Ashford 2003). On binding its hypothalamic

receptors, leptin stimulates a population of neurones

containing the anorexigenic proopiomelanocortin

(POMC) and cocaine- and amphetamine-regulated tran-

script (CART), thereby decreasing food intake and body

weight (Harvey & Ashford 2003). Moreover, leptin

increases energy expenditure through the stimulation of

sympathetic nerve activity in BAT (Scarpace et al.

1997). In this sense, leptin plays a crucial role in brown

adipogenesis and non-shivering thermogenesis, as leptin

deficiency is associated with an impaired BAT morphol-

ogy and function (Becerril et al. 2010, 2012). Leptin

also exerts an autocrine/paracrine effect on white adipo-

cytes through the stimulation of lipolysis counteracting

the adenosine deaminase-induced tonic inhibition

(Fr€uhbeck et al. 1997, 1998, 2001).

The ubiquitous distribution of leptin receptors (OB-

R), which show structural resemblance to the class I

cytokine receptor family, underlies the pleiotropic
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effects of leptin (Tartaglia et al. 1995). In this regard,

the skeletal muscle also constitutes a target for the

metabolic effects of leptin (S�ainz et al. 2009, 2010,

2012, Rodr�ıguez et al. 2015a) (Fig. 2). Leptin pro-

motes AMPK-induced FFA oxidation, enhances

GLUT4-mediated glucose uptake and reduces inflam-

mation and oxidative stress in muscle fibres (Muoio

et al. 1997, S�ainz et al. 2010, 2012). Moreover, leptin

increases muscle mass by increasing myocyte cell pro-

liferation and by reducing the expression of negative

regulators of muscle growth including myostatin, dys-

trophin or atrophy markers MAFbx or MuRF1 (S�ainz

et al. 2009, Hamrick et al. 2010, Rodr�ıguez et al.

2015a). Interestingly, leptin upregulates Fndc5 expres-

sion in the skeletal muscle and enhances irisin-induced

myocyte proliferation as well as the muscle growth

enhancers myogenin and myonectin, suggesting a syn-

ergic effect of both molecules on muscle accretion

(Rodr�ıguez et al. 2015a) (Fig. 3). It seems plausible

that these effects of leptin are mediated via OB-Rb, as

leptin receptor-deficient db/db or POUND Leprdb/lb

mice reportedly show an impaired muscle regeneration

(Nguyen et al. 2011b, Arounleut et al. 2013). Despite

the direct action of leptin on FNDC5/irisin expression

and function on skeletal muscle, serum irisin levels are

unaltered in leptin-deficient ob/ob mice before and

after exogenous leptin administration (Qui~nones et al.

2015, Rodr�ıguez et al. 2015a). The lack of changes in

circulating irisin in leptin deficiency and after leptin

replacement might be related to the current debate on

whether the antibodies used to detect plasma FNDC5/

irisin are valid or not (Erickson 2013, Raschke et al.

2013b, Bostr€om et al. 2014, Jedrychowski et al. 2015).

The crosstalk of leptin and irisin is also extended to

the adipose tissue (Gutierrez-Repiso et al. 2014,

Rodr�ıguez et al. 2015a). Contrary to what is observed

in the skeletal muscle, leptin downregulates Fndc5

expression in the subcutaneous adipose tissue of wild-

type and leptin-deficient ob/ob mice (Rodr�ıguez et al.

2015a). Moreover, leptin reduces irisin-stimulatedUcp1

and Cidec transcription as well as the generation of

UCP1-positive cells, suggesting a negative regulation on

the phenotypic transdifferentiation towards beige adipo-

cytes (Rodr�ıguez et al. 2015a). Interestingly, the incuba-

tion of human subcutaneous adipose tissue explants

with leptin also downregulates FNDC5 transcript levels

(Gutierrez-Repiso et al. 2014). This inhibitory effect of

leptin may explain at least in part the decreased serum

irisin concentration found in morbid obese patients,

which are characterized by hyperleptinaemia.

Conclusions

During the last three decades, the existence of diverse

‘organokines’ (adipokines, myokines, hepatokines and

osteokines) has been identified, which encompass fac-

tors produced and released exclusively or mainly by

specific organs and tissues with relevant metabolic

activity (G�omez-Ambrosi et al. 2008, Pedersen & Feb-

braio 2012, Stefan & H€aring 2013, Rodr�ıguez et al.

2015b). Since the discovery of leptin in 1994, adipoki-

nes have focused extensive research on the metabolic

impact of circulating factors (Rodr�ıguez et al. 2015b).

However, the discovery of myokines has also provided

a new basis to understand the molecular mechanisms

underlying the beneficial effects of physical activity on

the reduction of morbidity and mortality rates, due to

the action of myokines in metabolically active tissues,

such as the adipose tissue, liver or brain. Both skeletal

muscle and adipose tissue act as endocrine organs

individually, but growing evidence points to a cross-

talk of their metabolic mediators, namely myokines

and adipokines, underlining a more complex scenario

in the metabolic dialogue between organs. In the pre-

sent review, we have focused on the crosstalk of

adipokines and myokines in the switch of the pheno-

type of energy-storing white adipocytes into energy-

dissipating beige adipocytes (fat browning) (Bartelt &

Heeren 2014). Further studies are needed regarding

the potential impact of the dysregulation of adipokine

and myokine secretion and/or function due to a seden-

tary lifestyle and muscle atrophy on the development

of obesity and its associated pathologies, such as insu-

lin resistance and type 2 diabetes, among others.
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