2023-1학기 DU-도전학기 계획서

과제명	ROS를 활용한 실내 자율주행 로봇 제작			
신청 유형		□ 개인	■ 팀(팀명: AIS	S)
도전 영역	■ 전공(주전공 또는 복수전공) □ 일반선택			
신청 학점	3학점			
	성명	소속	학번	비고
		전기공학전공		팀장
참여자	김	전기공학전공		팀원
	0	전기공학전공		팀원
	0	전기공학전공		팀원
지도교수 의견	자연가장의 기보인 지지 생생하는 각다 가장에지 제한 거래는 것이 이는 그렇다고 대 보고되어 이 보고 전에는 내가 부산하는.			

1. 도전 배경

정보통신대학 전기공학전공 학술동아리 A.I.S. 소속 학생들이 모여 2023년도 1학기에 제작할 작품을 구상하고 있었습니다. 다양한 아이디어가 도출됐고 그중 가장 팀원들의 마음에 든 아이디어는 요즘 떠오르는 기술인 자율주행이었습니다.

학교에 개설된 수업을 찾아봤지만 자율주행에 특화된 이론 수업이 없으며 작품을 제작까지 하는 실습수업은 더더욱 없지만 대구대학교 전기공학전공으로써 자율주행 자동차, 전기자동차 전동화 등 미래형자동차 분야 관련 공부를 하고 싶어 팀원들이 각자 찾아봤습니다.

하지만 자율주행 관련 부품(LiDAR 센서, Depth 카메라 등)이 너무 비싸 경제적으로 많은 부담이 되어구매하기가 힘들었습니다.

그러던 중 도전학기 프로그램 공지가 올라왔고 학업적으로든 경제적으로든 자율주행 관련 기술에 대한 공부를 편하게 하기 위해 도전학기에 신청하게 되었습니다.

2. 도전 과제의 목표

가. 팀 목표 : ROS를 사용해서 실내 자율주행 로봇 제작

나. 개인 목표

- 1) : ROS에 사용되는 여러 라이브러리, 패키지를 다뤄보고 익히기.
 - 오픈소스로 제공하는 SLAM, RPLiDAR 패키지 및 rqt, rviz 등 내장 프로그램을 다양한 방식으로 구동해보고 사용법을 익히기.
- 2) 김 : 하드웨어와 소프트웨어가 결합 된 작품 제작해보기.
 - 개발보드를 사용하여 하드웨어와 소프트웨어를 연결하고 하드웨어 및 소프트웨어를 다뤄보며 작품 제작하기.
- 3) 이 : 실내 자율주행 관련 기술 학습
 - LiDAR 센서, 카메라 등을 사용해 실내 자율주행 관련 기술인 mapping, navigation 주행 등을 학습하기.
- 4) 이 : 하드웨어 및 아두이노 관련 기술 습득
 - 하드웨어에 기본이 되는 아두이노를 학습하고 3D 프린팅이나 기타 다른 기술을 사용해 하드웨어를 설계하기.

3. 도전 과제 내용

ROS를 학습하고 ROS를 활용해 실내 자율 주행 로봇 제작

가. 학습 목표

- 매주 모여 작품 제작에 관련된 이론 학습을 진행하고 ROS에서 사용하는 다양한 센서와 장비를 다뤄본 후 최종적으로 자율 주행 로봇 작품을 제작.

나. 팀원 업무 분담

팀원 성명	소속	담당 업무
	전기공학전공	- 팀장
한		- 개발 전반 관리
51		- ROS 관련 패키지 사용
		- 예산 관리
김	전기공학전공	- 하드웨어 설계
	선기능확신능	- 하드웨어 - 소프트웨어 연동
0	전기공학전공	- 센서 다루기
		- 센서별 소프트웨어 프로그래밍
Ol	전기공학전공	- 전체적인 하드웨어 설계
		- 아두이노 관련 프로그래밍

- 업무를 분담과는 별개로 팀원 모두 주차 별 관련된 학습을 진행한다.

다. 운영 규칙

- 느리더라도 확실히 알고 넘어가기
- 밝고 화목한 분위기로 학습하기

4. 도전 과제 추진일정

주차	활동 목표	활동 내용	투입 시간
1주차	리눅스 기본 지식	한 팀장): 리눅스 기본지식 및 리눅스 기반 운영체제 학습	<i>4시간</i>
		김 (팀원): 리눅스 기본지식 및 리눅스 기반 운영체제 학습	4시간
	학습	이 (팀원): 리눅스 기본지식 및 리눅스 기반 운영체제 학습	<i>4시간</i>
		이 (팀원): 리눅스 기본지식 및 리눅스 기반 운영체제 학습	4시간
		한 팀장): C언어 학습 및 프로그래밍 역량 강화	4 <i>X</i> <i>Z</i>
2주차	프로그래밍 언어 학습(C언어)	김 팀원): C언어 학습 및 프로그래밍 역량 강화	<i>4시간</i>
- 171		이 팀원): C언어 학습 및 프로그래밍 역량 강화	<i>4시간</i>
		이 팀원): C언어 학습 및 프로그래밍 역량 강화	4시간
		한 팀장): 파이썬 학습 및 프로그래밍 역량 강화	4시간
3주차	프로그래밍 언어	김 팀원): 파이썬 학습 및 프로그래밍 역량 강화	4시간
0 1 1 1	학습(PYTHON)	이 팀원): 파이썬 학습 및 프로그래밍 역량 강화	4시간
		이 팀원): 파이썬 학습 및 프로그래밍 역량 강화	4시간
		한 팀장): 아두이노 문법 및 라이브러리 학습	4 <i>\\Z</i> {
4주차	아두이노 학습	김 팀원): 아두이노 문법 및 개발보드 학습	4 <i>\\Z</i> {
' ' '	11 1— 16	이 팀원): 아두이노 문법 및 개발보드 학습	4 <i>\\Z</i> {
		이 팀원): 아두이노 문법 및 라이브러리 학습	<i>4시간</i>
		한 팀장): 모터드라이버, DC 모터 등 구동 부분 센서 학습 및 S/W 프로그래밍	12시간
5주차	아두이노 센서 실습	김 팀원): 모터드라이버, DC 모터 등 구동 부분 센서 학습 및 S/W 프로그래밍	12시간
		이 팀원): 초음파, 자이로센서 등 여러 센서 학습 및 센서별 S/W 프로그래밍	12시간
		이 팀원): 초음파, 자이로센서 등 여러 센서 학습 및 센서별 S/W 프로그래밍	12시간
	개발보드 기본 지식 학습	한 팀장): 라즈베리파이, 젯슨나노 등 개발보드 관련 기본 지식 학습 및 실습	8시간
6주차		김 팀원): 라즈베리파이, 젯슨나노 등 개발보드 관련 기본 지식 학습 및 실습	8시간
		이 팀원): 라즈베리파이, 젯슨나노 등 개발보드 관련 기본 지식 학습 및 실습	8시간
		이 팀원): 라즈베리파이, 젯슨나노 등 개발보드 관련 기본 지식 학습 및 실습	8 <i>\\Z</i> F
	ROS 기본 강의학습	한 팀장): ROS 이론 및 동작원리 설명 (세미나 형식)	4 <i>\\Z</i> }
7주차		김 팀원): ROS의 동작원리 및 특징 학습	4시간
		이 팀원): ROS의 동작원리 및 특징 학습	4 <i>X</i> <i>Z</i>
		이 팀원): ROS의 동작원리 및 특징 학습	4 <i>X</i> <i>Z</i>
	ROS 환경 설정	한 팀장): ROS 구동을 위한 운영체제 설치	4 <i>\\Z\</i>
8주차		김 팀원): ROS 구동을 위한 운영체제 설치	4 <i>\\Z</i> }
		이 (팀원): 운영체제에 맞는 ROS 버전 설정	4 <i>\\Z</i> }
		이 (팀원): 운영체제에 맞는 ROS 버전 설정 한 (팀장): LiDAR, 자이로센서, 웹캠 등 센서 학습	<i>4시간</i>
9주차	ROS 관련 센서 학습	및 실습 / 센서별 S/W 프로그래밍	12시간
		김 (팀원): LiDAR, 자이로센서, 웹캠 등 센서 학습 및 실습 / 센서별 S/W 프로그래밍	12시 <u>간</u>
		이 (팀원): LiDAR, 자이로센서, 웹캠 등 센서 학습 및 실습 / 센서별 S/W 프로그래밍	12 <i>\\Z</i> ŀ
		이 (팀원): LiDAR, 자이로센서, 웹캠 등 센서 학습 및 실습 / 센서별 S/W 프로그래밍	12시 <u>간</u>
10주차	ROS 라이브러리 학습	한 (팀장): opencv, rospy 등 s/w 프로그램이 관련 라이브러리 학습 및 실습	8시간
		김 (팀원): opencv, rospy 등 s/w 프로그램이 관련 라이브러리 학습 및 실습	8시간

		0	(팀원) : SLAM, RPLiDAR 등 ROS 오픈소스 패키지 학습, 작동원리 파악	8시간
		0	(팀원) : SLAM, RPLiDAR 등 ROS 오픈소스 패키지 학습, 작동원리 파악	8시간
11주차	H/W 기본 틀 제작	한	(팀장) : 전체적인 H/W 틀 설계	4시간
		김	(팀원) : 구동 부분 설계	4시간
		0	(팀원) : 3D 프린팅을 활용한 프레임 제작	4시간
		0	(팀원) : 3D 프린팅을 활용한 프레임 제작	4시간
	아두이노를 활용한	한	(팀장): 모터드라이버 부분 아두이노 S/W 프로그래밍	6시간
10조원		김	(팀원): 모터드라이버 쉴드 - DC모터 배선	<i>6시간</i>
12주차 ' '	H/W 제작	0	(팀원): 모터드라이버 부분 아두이노 S/W 프로그래밍	<i>6시간</i>
		0	(팀원): H/W 프레임 - DC모터 연결	6시간
13주차	사용할 S/W 학습	한	(팀장): 이전에 학습한 ROS와 python 라이브러리 연동	6×1 <u>2</u> 1
		김	(팀원) : 아두이노 - ROS 연동 라이브러리 학습 및 실습	<i>6시간</i>
		0	(팀원) : ROS의 기본 소프트웨어 응용프로그램 학습	6시간
		0	(팀원) : ROS의 기본 소프트웨어 응용프로그램 학습	6시간
14주차	S/W를 사용해 기능 구현	한	(팀장) : 전반적인 작품 S/W 프로그래밍	10시간
		김	(팀원): 바퀴 구동 부분 S/W 프로그래밍	10시간
		0	(팀원) : ROS 패키지를 사용한 SLAM 기능 구현	10시간
		0	(팀원) : ROS 패키지를 사용해 LiDAR 센서 기능 구현	10시간
15주차	작품 완성 및	한	(팀장) : 작품 제작 완성 및 기능 테스트	4시간
		김	(팀원) : 작품 제작 완성 및 기능 테스트	<i>4시간</i>
	테스트	0	(팀원) : 작품 제작 완성 및 기능 테스트	<i>4시간</i>
		0	(팀원) : 작품 제작 완성 및 기능 테스트	4시간

5. 활동 지원비 상세 내역

활동 지원비 신청내역				
항 목		산출근거	금액(원)	
회의비		(500,000 x 4) % 30%	600,000원	
	LiDAR 센서	500,000 x 2개 = 1,000,000원		
재료비	아두이노 Uno	35,200 x 3개 = 105,600원	1,369,100원	
	모터드라이버 쉴드	18,700 x 5개 = 93,500원		
	라즈베리파이	170,000 x 1개 = 170,000원		
합계(원)			1,969,100원	

6. 과제 수행 후 제출할 수 있는 결과물

우리가 제출할 수 있는 결과물은 팀원 모두가 힘을 합쳐 만든 실내 자율 주행 로봇입니다.

- 현재 구상 중인 작품 결과물

구분	내용	
몸체	3D 프린팅을 사용해 제작	
바퀴	아두이노, 모터드라이버 쉴드, DC 모터를 사용해	
PT 1	바퀴 제작	
메인 개발 보드	라즈베리파이나 젯슨나노를 메인 개발보드로	
메인 개월 모드	사용	
소프트웨어	- ROS로 기본 소프트웨어 응용프로그램 사용	
조르드웨이	- SLAM, RPLiDAR 패키지 사용	
센서	- LiDAR 센서를 사용해 실내 공간 매핑	
엔스	- LiDAR 센서 및 카메라를 사용해 장애물 감지	