DU-도전학기 결과보고서

과제명	건조방법에 따른 파스닙의 품질특성 및 산화방지 활성						
	성명	소속	학번				
	변○섭	식품공학과					
참여자	김○희	식품공학과					
지도교수 의견	위 학생들이 설계한 프로젝트의 수행내용이 식품 품질(물리적 특성, 기능적성 등)의 실험 데이터를 기반으로 고부가가치 식품을 개발하기 위한 기초 실험 잘 수행하여, <du-도전학기> 프로그램의 핵심 목표인 '학생 스스로 목표를 심하고, 내용을 설계하여 프로젝트를 수행하는' 핵심 부분을 충분히 잘 이행하였고 판단됩니다.</du-도전학기>						
	(소속) 식품공학과	(성명)	(서명 또는 날인)				

1. 도전 과제 내용

1.1. 기획 단계

자료조사	타깃식품에 대한 자료 탐색 및 타깃식품 선정	1주차
예비실험 및 본 실험 계획	본 실험을 위한 예비실험 진행 및 본 실험 계획	5~10주차

1.2. 사전 교육

실험실 안전교육	국가 안전 정보시스템을 통한 실험실 내 안전을 위한 주 의사항 습득	2주차
연구노트	연구노트 포털을 이용한 연구노트 작성법 습득	2주차
기자재 사용법	실험 기자재들의 원리와 사용법 습득	3, 4주차

1.3. 실험수행(예비실험 포함)

건조	열풍 건조기, 동결 건조기를 통한 원료별 건조법 확립	5, 11주차
물성 실험	건조 방법에 따른 원료의 색도, 경도, 수분함량 측정	6, 11주차
재수화 실험	건조 방법에 따른 원료의 재수화율 및 온도별 재수화율 측정	7, 8, 12주차
DPPH 라디칼 소거능	분광광도계를 이용한 DPPH 라디칼 소거능 측정	9, 13주차
ABTS 라디칼 소거능	분광광도계를 이용한 ABTS 라디칼 소거능 측정	9, 13주차
총 폴리페놀 함량	분광광도계를 이용한 총 폴리페놀 함량 측정	10, 14주차
총 플라보노이드 함량	분광광도계를 이용한 총 플라보노이드 함량 측정	10, 14주차

1.4. 통계분석 및 고찰

SAS 통계분석	타깃식품 실험 결과 통계분석	15주차
결과 분석 및 고찰	타깃식품 실험 전체의 결과 분석 및 고찰	15, 16주차

1.5. 업무 분장

팀원 성명	소속	담당 업무
변○섭	식 품 공 학 과	▶ 선정된 타깃식품 #1 관련 참고자료 수집 및 연구 목적과 필요성 작성 ▶ 실험실 안전교육 교육 요약문 작성 ▶ 연구 노트 작성법 교육 요약문 작성 ▶ 실험장비 설명서 개발(분광광도계, 색차계, Textrometer) ▶ 타깃식품 #1의 건조 및 물리적 품질 특성, 온도별 재수화 특성 실험 ▶ 타깃식품 #1의 산화방지 활성 실험(DPPH, ABTS, 총 폴리페놀 함량, 총 플라보노이드 함량) ▶ 산화방지 활성 측정법 정리(DPPH 라디칼 소거능, ABTS 라디칼 소거능) ▶ 타깃식품 #1의 전체 실험결과의 정리 및 통계분석 ▶ 월보고서, 중간보고서 및 최종보고서 작성
김○희	식 품 공 학 과	▶ 선정된 타깃식품 #2 관련 참고자료 수집 및 연구 목적과 필요성 작성 ▶실험실 안전교육 교육 요약문 작성 ▶연구 노트 작성법 교육 요약문 작성 ▶실험장비 설명서 개발(열풍건조기, 동결건조기, 수분함량 측정기, 항온수조) ▶타깃식품 #2의 건조 및 물리적 품질 특성, 온도별 재수화 특성 실험 ▶타깃식품 #2의 산화방지 활성 실험(DPPH, ABTS, 총 폴리페놀 함량, 총 플라보노이드 함량) ▶타깃시료 #2의 산화방지 활성 실험방법 (DPPH 라디칼 소거능, ABTS+ 라디칼 소거능, 총 폴리페놀 함량 측정) ▶타깃식품 #2의 전체 실험결과의 정리 및 통계분석 ▶월보고서, 중간보고서 및 최종보고서 작성

2. 도전 과제 수행 결과 및 성과

2.1. 팀 공통 과제 수행 결과

상세 내용

- 연구실 안전교육(안전관리 기본, 실험전·후 안전)
- 연구노트 작성법 교육 이수증 및 교육 요약문
- 기자재 사용 설명서(열풍건조기, 동결건조기, 색차계, Texturometer, 분광광도계, 수분함량 측정기, 항온수조)
- 선정된 타깃식품 관련 참고 자료 수집 및 연구목적과 필요성 관련 내용
- 타깃시료 #1, #2의 예비실험(건조공정, 물리적 특성, 재수화 특성, 산화방지활성) 실험 성과 및 문 제점 분석내용
- 타깃시료 #1, #2의 본 실험 계획서(건조공정, 물리적 특성, 재수화 특성, 산화방지활성) 및 본 실험 전체 결과의 정리
- 통계분석(SAS) 교육 및 요약문, 전체 실험결과의 해석 및 고찰
- 포스터 제작

2.2. 개인 과제 수행 결과

팀원	개인 결과물
변○섭	- 실험실 안전교육 이수증 및 교육 요약문 - 연구 노트 작성법 이수증 및 교육 요약문 - 기자재 사용 설명서(열풍건조기, 분광광도계, 색차계, Texturometer) - 타깃시료 #1 실험 계획서(건조공정, 물성, 재수화, 산화방지 활성) - 타깃시료 #1의 실험 데이터 결과(건조공정, 물성, 재수화, 산화방지 활성)
김○희	- 실험실 안전교육 이수증 및 교육 요약문 - 연구 노트 작성법 이수증 및 교육 요약문 - 기자재 사용 설명서(동결건조기, 수분함량 측정기, 항온수조) - 타깃시료 #2 실험 계획서(건조공정, 물성, 재수화, 산화방지 활성) - 타깃시료 #2의 실험 데이터 결과(건조공정, 물성, 재수화, 산화방지 활성)

3. 자기 평가

팀원 성명	소속	자기 평가
변○섭	식 품 공 학 과	타깃시료 #1(열풍건조)에 대해 건조, 물리적 품질 특성, 재수화, 산화방지 활성실험을 진행하였다. 이로써 도전학기에서 계획한 내용 중 플라보노이드 함량 측정실험을 제외한 대부분을 성공적으로 마무리 하였다. 진행했던 실험들과 결과들은 도전학기 시작 전부터 찾아왔던 논문들을 비교, 확인하며 실험을 진행해왔고 결과역시 예측한대로 나와 다행이라 생각한다. 계획에 있었던 플라보노이드 함량 측정 실험은 식품공학과 지도 교수님 및 화학실험실의 도움을 받아 도전학기가 끝나더라도 진행 해보려 한다. 또한 SAS 통계
		분석에 관한 내용은 전공과목인 실험통계학에서 다루려 하였으나, 아쉽게도 다루지 못하여 다음 전공 개설 예정과목인 식품품질관리실무 과목이나 다른 과목에서 배울 수 있도록 하겠다. 끝으로 도전학기를 통해 실험을 진행하면서 문제를 마주하고 해결하면서 성취감도 느끼고 전공능력 또한 향상됨을 느껴 스스로에게 좋은 기회였다고 평가한다.
김○희	식 품 공 하 과	타깃시료 #2(동결건조)에 대해 건조, 물리적 품질 특성, 재수화, 산화방지 활성실험을 진행하였다. 중간보고서 제출기간에는 기기장치를 이용해 경향만 측정하면되는 간단한 실험이었으나, 산화방지 활성실험에서 예기치 못하게 플라보노이드함량 측정이 되지 않는 문제가 생겼고 지도교수님과의 면담을 통해 다른 플라보노이드 측정 방법을 사용하는 게 좋겠다고 판단하여 새로운 시약으로도 진행해보았으나 바꾼 시약으로도 실패를 했다. 도전학기 분량을 많이 배정하여 플라보노이드에만 신경을 쓸 수가 없어 결과를 내지 못해서 아쉬웠다. 또한 SAS 통계분석을 전공 과목인 실험통계학 시간에 배울 예정이었으나, 교수님께서 다른 부분을 강의하셔서 SAS 통계에 대해 배우지 못했다는 점이 아쉽다. 하지만 총플라보노이드 함량을 제외한 다른 실험들은 모두 성공적으로 결과가 나와서 좋았고, 전공능력 향상과 더불어 실험을 통해 문제해결 능력까지 배양되어 앞으로의 다른 실험에서는 효율적으로 시간을 분배하여 실험을 진행할 수 있을 것같다.

4. 최종 결과물(별첨)

건조방법에 따른 파스닙의 품질 특성 연구

Food_Challenge_2022

건조는 식품을 보존하는 가장 오래되고 중요한 방법 중의 하나로 오늘날에도 흔히 사용되고 있다. 건조 과정 중 식품 내 수분이 약 909 제거되고 미생물의 성장에 따른 부패를 지면시키며, 물에 의해 매개되는 분해 반응을 완화하고 운송비를 절감할 수 있는 이점이 있다

(Lamidi et al. 2019).

건조 방법은 크게 열건조와 비열건조로 구분할 수 있는데, 열건조 방식은 주로 열용건조, 적의선건조, 마이크로파건조, 진공건조 등이 있으며, 비열건조 방식에는 동결건조가 있다(Chen et al. 2016). 이 중 열충건조는 비교적 공정이 만든하고 비용이 저렴해 여전히 가장 날리 사용되는 방법이지만, 건조 온도를 제대로 설정하지 않을 경우, 고온에 진원한 화법을의 파괴와 원능적 및 영양학적 동절 자연을 조약 수 있다(WOO)에 et al. 2016, 반면에 등 생건전 기계를 두 하는 시간 유학자 의미의 보존에는 자꾸가, 관점 자계가 살로 작 보이 있는데 보안에 보면에 등 생건전 기계를 보이는 지수를 보이는 지수를 보이는 기계를 보는 기계를 보이는 기계를 보이는

실험방법

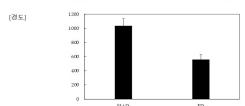
- [열용권조] 1. 수세, 막비, 세척 과정을 거친 파스님을 너비 0.5 cm, 권이 5 cm로 손질한다. 2. 스소 선배 중이로질을 당와 고성하여 발경한 간격으로 파소님 배널린다. 3. 60'도로 예열할 (물건조기에 파스님을 받고 24시간 건조한다. 시 건조 전로한 파스님을 말본역에 많아 대시계에 따라 남의 단한다.

- [등물리집] 4 수세, 박피, 세적 과정을 거진 파스님을 너비 0.5 cm, 길이 5 cm로 손길한다. 4 수실 박피, 세적 과정을 거진 파스님 생용한다. 3. 건조 단에 왕당한 건국으로 파스님 배결한다. 3. 건조 단에 왕당한 건국으로 파스님들 일고 진공상태에서 48시간 건조한다. 4. 건조 전문한 파스님을 일상해야 있어 대시개이다 넓어 보관한다.

- (주본장병)
 1. 빈 수기를 105℃ 오본에서 1시간 건조 후 대시케이터에 30분 방녕과정을 반복하여 무게를 육정해 0,0003 g 오차병위 내 험량을 맞춰준 뒤 번 수기의 무게를 기록한다.
 2. 수기 내용에 건조한 파스님 시료를 2 g 넘어 간조 전 시료+수기 무게를 기록한다.
 3. 시료가 온 수기를 105℃ 오본에서 1시간 건조 대시커이터 30분 방녕과정을 반복하여 무게를 즉정해 0,0003 g 오처병위 내 험량을 맞춰준 뒤 건조 후 시료+수기 무게를 기록한 뒤 수분합량을 계산한다.

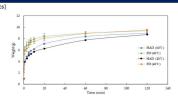
- [세도]
 1. 건조한 파스님을 맡게 받아 1차 분쇄한다.
 2. 분쇄기를 이용해 2차 분쇄한다.
 3. 분쇄한 파스님 분말을 패트리 접시에 일정하게 당아 색도를 죽정한다.

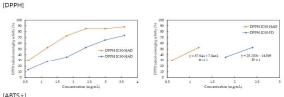
- [Rehydration kinetics]
 1. 제수하 유도는 40, 60°C 온도의 항은수조에서 목정한다.
 2. 온로를 설명한 항은수조 전에 종취수 500 mi를 제출 1. 비비를 넣어 중앙하여 온도를 맞추어 준다.
 3. 건호된 피스남 1g를 설명에 넣어 온도를 맞춘 1. 비비전에 넣는다.
 4. 1, 2, 3, 1, 40, 60일 건구보로 1. 비비전에 참보다.

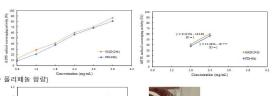

- PPHI ** 자랑한 주 22-Diphenyl-1-picyfhydrap! 0.0197 g [50 mL 기준)을 E10H에 녹여 0.1 mM DPPH 음역을 제조한다. 작진6.12, 18, 24, 30, 36.42 mg/mL 등도의 LR를 제조한다. 당도별 제조한 1.3 mL와 0.1 mM DPH 음약 1 mL에 함하 가 잦은에서 자랑한 채로 30분간 반응시킨다. 이 음역을 분명된도계를 사용해 517 mm에서 중공도를 작업한다. 대조구는 시설적 대한 101%을 사용한다.

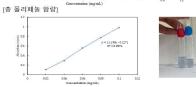
- (ASTS-1) ... ARTS-0.0768 g코 유무수를 넘어 7 mM ABTS-20 mL를 조제하고, Potassium persulfate 0.0130 g와 유류수를 넣어 2.4 mM Potassium persulfate 20 mL를 만든다.
 persulfate 20 mL를 만든다.
 2 선은 일일에 7 mM ABTS-20 mM 고화산보를 20 mL를 11 비율호 회석 후 12시간 반흥시계 라디질 생성을 유도한다.
 3. 제조는 ARTS-라디질 용병을 ECH 30 mL에 3위해 724 mMR 0.0 값이 0.7±005가 되도록 한다.
 5. 제조로 ARTS-라디질 용상을 ECH 10 mL에 3개 m NB 10분간 반응시킨다.
 6. 분광동도계를 이용해 73 mm와서 음문도를 주었한다.
 10 문조는 시골병로 제외 대신 ECH 보여 M전한다.

- (종 용리템을 함함) 1. Na(CO, 2010)에 종류수 7.99g을 넣어 2015 Na(CO)를 조명한다. 2. O.1 mg/mt. 시료 주물역 2 mt/에 응류수 2 mt/를 참가한 후 2 N. Folin-Clocalteu's phenol reagent 0.5 mt/를 넣고 혼발해 5분간 실은에서 반 중시킨다.
- 용시킨다. 반응 용약에 20% Na₂CO₂0.5 mL를 넣어 실은 암조건에서 30분 동안 정치한다. 분광광조기를 이용해 765 nm에서 공원도를 추정한다. 주정된 종장도는 galic acid를 이용하여 작성된 표준 구선을 이용해 집량선을 작성하여 중 폐능합당을 계산한다.


실험결과


시간(h)	반복	L*	a*	b*	시간(h)	반복	L*	a*	b*
24					48				
	1	72.20	2.26	19.01		1	72.92	1.60	19.81
	2	72.66	2.06	18.73		2	72.22	0.89	19.42
	3	72.77	1.87	18.83		3	72.63	0.93	19.27
	평균	72.54	2.06	18.86		평균	72.59	1.14	19.50
	표준편차	0.30237945	0.19502137	0.14189198		표준편차	0.35171011	0.39887341	0.2787472
	열풍건조						동결건조		




실험결과

Rehydration kinetics]

결론

- -본 연구에서는 건조방법에 따른 파스님의 품질특성과 산화방지 활성에 대해 실험을 진행하였다. -경도는 일광건조 시료가 동결건조 시료보다 더 높게 나타났고, 색도는 얼콩건조 시료가 동결건조 시료보다 t, b*값이 낮고 a* 값이 높게 나타났으며, 재수화는 동결건조 시료가 열용건조 시료보다 제수화율이 모든 운도(60, 30℃)에서 높았다.
- 페놀 함량이 많다.
- •이상의 결과를 통하여 열중건조가 동결건조보다 파스님의 물리적 특성, 산화방지 활성 손실을 최소화할 수 있는 건조 방법이라 사료된

참고자<u>료</u>

- Adam F, Pilar L, Kraynatof L, Angel AC, Carbonell B, Franctica H. Chemical composition anticodant capacity, and sensory quality of dated jujube fruits as afferbod. Food Chem. 207, 1704-79 (2016) sponents and anticoddant activities of Erginness controller Kitag extracts using diffe
- **January M., Amer. P. Rut. 1, Errament J., Angel A.C., Carbound R.J., Fancises H. Chemical compositions and smoothest requires, and semony quality of short by an affected private and a final highest flower generated and management and processing and seminated as a critical and process community for the private programment of the private progr